

GYC7982

差分输入、1MSPS 采样率、18 位 SAR ADC

概述

GYC7982 是一款 18 位、逐次逼近型模数转换器(ADC),采用单电源供电。它内置一个低功耗、高速、18 位采样 ADC 和一个多功能串行接口。在 CNV 上升沿,GYC7982 对 IN+与 IN-管脚之间的电压差进行采样,两个输入管脚上的信号通常相位相反,电压摆幅在 0V 至 V_{REF}之间。基准电压 V_{REF} 由外部提供,并且可以独立于电源电压 V_{DD},其功耗与吞吐率呈正比例变化关系。

GYC7982 利用 SPI 接口的 SDI 输入管脚,可以采用菊花链的方式将多个 ADC 连接在一起,并提供一个可选的繁忙指示。通过独立电源 V_{IO},该芯片可与 1.8V、2.5V、3V 和 5V 逻辑兼容。

GYC7982 采用 MSOP10 型和 DFN10 型封装形式。

应用领域

- 仪器仪表
- 自动化测试设备
- 高精度数据采集卡
- 医疗仪器

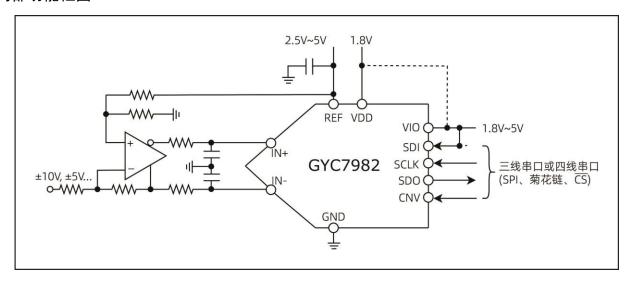
特性说明

- 单电源供电: 1.8V
- 逻辑接口电压: 1.8V、2.5V、3V、5V
- 真差分模拟输入范围: ±V_{RFF}
- 18位分辨率、无失码
- 吞吐率: 1MSPS
- 性能

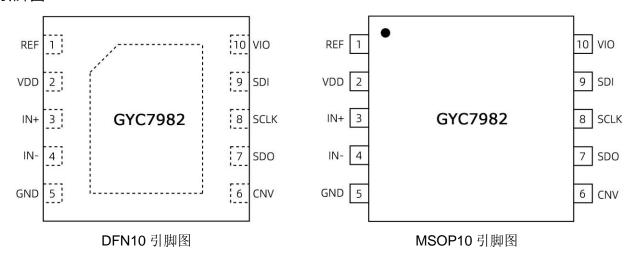
INL: 典型值为±1.2LSB (V_{REF} = 5V) 动态范围: 99dB (V_{REF} = 5V)

SNR: 97.5dB ($f_{IN} = 1kHz$, $V_{REF} = 5V$) SNDR: 97dB ($f_{IN} = 1kHz$, $V_{REF} = 5V$)

THD: -119dB ($f_{IN} = 1kHz$, $V_{REF} = 5V$)


- 串行接口: SPI/QSPI/MICROWIRE 兼容
- 以级联形式连接多个 ADC, 提供繁忙指示
- 无流水线延迟
- 低功耗: 3.3mW(1MSPS,仅 V_{DD})

5.7mW (1MSPS, 总功耗)


55µW (10kSPS, 总功耗)

技术说明

内部功能框图

引脚图

引脚定义

表 1 GYC7982 引出端功能

引脚序号	引脚名称	引脚类型	说明
1	REF	AI	基准输入电压。REF 范围为 2.4V ~ 5.1V。此管脚与 GND 管脚之间应连接 10μF 的去耦电容
2	V_{DD}	PWR	电源。电压范围为1.71V~1.89V,典型值为1.8V
3	IN+	AI	正差分模拟输入
4	IN-	AI	负差分模拟输入
5	GND	GND	地
6	CNV	DI	转换启动信号。此信号除了可在上升沿启动转换外,还可选择数字接口工作模式:级联模式或片选模式。级联模式下,数据在CNV为高电平时读取。片选模式下,CNV为低电平时SDO管脚使能
7	SDO	DO	串行数据输出。转换结果通过此管脚输出,与SCLK同步
8	SCLK	DI	时钟输入。在级联模式下,如果CNV上升沿期间SCLK为高电平,则产生繁忙指示

引脚序号	引脚名称	引脚类型	说明
9	SDI	DI	串行数据输入。如果CNV上升沿时SDI为低电平,则数字接口工作在级联模式。此模式下,SDI作为数据输入,将两个或更多的ADC转换结果以级联模式传输到单一SDO上。SDI上的数据经过16SCLK周期延迟后输出到SDO。如果CNV上升沿时SDI为高电平,则数字接口工作在片选模式。此模式下,SDI或CNV在低电平时均可使能SDO。当转换完成时,如果SDI或CNV为低电平,则产生繁忙指示
10	V _{IO}	PWR	输入/输出数字接口电源。此管脚的标称电源与主机接口电源相同(1.8V、2.5V、3V、5V),电压范围为1.71V~5.5V
11	EPAD	_	裸露焊盘。对于DFN10封装,将裸露焊盘连接至GND

绝对最大额定值

REF. $V_{IO} \sim GND$ -0.3V ~ +6V	
V_{DD} ~ GND ······· -0.3V ~ +2V	
$V_{DD} \sim V_{IO}$	
IN+、IN-~GND ···········	
数字输入电压 ~ GND ···································	
数字输出电压 ~ GND ···································	
工作温度	
存储温度	
结温 ······ 150°C	
ESD (HBM) 2KV	
ESD (CDM) 750V	

参数列表

默认测试条件: V_{DD} = 1.8V、 V_{IO} = 1.71V ~ 5.5V、 f_{SAMPLE} = 1MSPS、 T_A = -40°C ~ +125°C。

参数	测试条件	最小	典型	最大	单位		
直流精度							
分辨率	无失码	18	_	-	Bits		
DNL	-	-0.9	±0.7	0.9	LSB		
INL	-	-1.5	±1.2	2	LSB		
增益误差	-	-0.004	0.001	0.004	%FS		
增益误差温漂	_	_	0.13	-	ppm/°C		
0 码误差	-	_	±3	_	LSB		
0 码误差温漂	-	_	0.1	-	ppm/°C		
动态性能							
动态范围	V _{REF} = 5V	97	99	_	dB		
幼 念池田	V _{REF} = 2.5V	_	93	-	dB		
过采样动态范围[1]	F _O = 1kSPS	_	129	-	dB		
SNR	$f_{IN} = 1kHz$, $V_{REF} = 5V$	96	97.5	-	dB		
SINK	$f_{IN} = 1kHz$, $V_{REF} = 2.5V$	_	92	-	dB		

参数	测试条件	最小	典型	最大	单位
CNIDD	$f_{IN} = 1kHz$, $V_{REF} = 5V$	95.5	97	-	dB
SNDR	$f_{IN} = 1kHz$, $V_{REF} = 2.5V$	-	91.5	-	dB
THD	f _{IN} = 1kHz	-	-119	-	dB
SFDR	f _{IN} = 1kHz	-	-120	-	dB
人马安共帝	-3dB	-	10	-	MHz
全功率带宽	孔径延迟	95.5 97 - 91.5 119 120 - 10 - 10 - 1 - 91 - 73 - VREF - 0.1 - 0.5VREF - 200 - 2.4 - 470 - 470 - 0.3 - 470 - 0.3 470 - 1 470 - 1 470 - 1 55 - 5.7 - 33 - 22 - 3.3	-	ns	
PSRR	-	-	91	-	dB
CMRR	f _{IN} = 450kHz	-	73	-	dB
模拟输入					
电压范围	IN+ ~ IN-	-V _{REF}	-	V_{REF}	V
绝对输入电压	IN+, IN-	-0.1	-	V _{REF} +0.1	V
共模输入范围	IN+, IN-	0.475V _{REF}	$0.5V_{REF}$	0.525V _{REF}	V
漏电流	采样阶段,T _A = 25℃	-	200	-	nA
基准					
电压范围	-	2.4	-	5.1	V
负载电流	-	-	470	_	μA
数字输入/输出					
	V _{IO} > 3V	-0.3	-	0.3V _{IO}	V
V_{IL}	V _{IO} ≤ 3V	-0.3	-	0.1V _{IO}	V
	V _{IO} > 3V	0.7V _{IO}	-	V _{IO} +0.3V	V
V_{IH}	V _{IO} ≤ 3V	0.9V _{IO}	-	V _{IO} +0.3V	V
I _{IL}	-	-1	-	1	μA
I _{IH}	-	-1	-	1	μA
V _{OL}	I _{SINK} = 500μA	-	-	0.4	V
V _{OH}	I _{SOURCE} = -500μA	V _{IO} -0.3	-	-	V
电源		<u> </u>			
V_{DD}	-	1.71	1.8	1.89	V
V _{DRIVE}	-	1.71	-	5.5	V
待机电流	$V_{DD} = 1.8V, V_{IO} = 3.3V$	-	0.7	-	μA
	总功耗,f _S = 10kSPS	-	55	-	μW
	总功耗,f _S = 1MSPS	-	5.7	7	mW
T-1 + C	仅 V _{DD} ,f _S = 10kSPS	-	33	-	μW
功耗	仅 V _{REF} ,f _S = 10kSPS	-	22	-	μW
	仅 V _{DD} ,f _S = 1MSPS	-	3.3	3.8	mW
	仅 V _{REF} ,f _S = 1MSPS	_	2.4	-	mW

注 1: ADC 以 $f_S = 1$ MSPS 的采样率采样的数据,经过后级数字滤波器滤波和降采样后,以 $F_O = 1$ kSPS 输出信号的动态范围。

时序规格

默认测试条件: V_{DD} = 1.71V ~ 1.89V、 V_{IO} = 2.3V ~ 5.5V、 f_{SAMPLE} = 1MSPS、 T_A = -40°C ~ +125°C。

参数	最小	典型	最大	单位	描述	
通用时序	•					
t _{CONV}	_	600	-	ns	CNV 上升沿到转换结果有效的转换时间	
t _{ACQ}	-	400	-	ns	采样时间	
tcyc	1000	_	-	ns	转换周期	
t _{CNVHW}	10	-	-	ns	CNV 高电平脉冲宽度(片选模式)	
SCLK	•					
	_	_	-	-	SCLK 周期(片选模式)	
	10.5	-	-	ns	V _{IO} > 4.5V	
t _{SCKCS}	12	-	-	ns	V _{IO} > 3.3V	
	13	_	-	ns	V _{IO} > 2.7V	
	15	_	-	ns	V _{IO} > 2.3V	
	_	_	-	-	SCLK 周期(级联模式)	
	11.5	_	-	ns	V _{IO} > 4.5V	
tsckch	13	_	_	ns	V _{IO} > 3.3V	
	14	_	-	ns	V _{IO} > 2.7V	
	16	_	-	ns	V _{IO} > 2.3V	
t _{SCKLW}	4.5	_	-	ns	SCLK 低电平脉冲宽度	
t _{SCKHW}	4.5	_	-	ns	SCLK 高电平脉冲宽度	
t _{SDOHD}	3	5.6	9	ns	SCLK 下降沿后数据仍有效保持时间	
	_	_	-	-	SCLK 下降沿到数据有效时间间隔	
	_	6.5	10	ns	V _{IO} > 4.5V	
t _{SDOD}	_	6.5	10	ns	V _{IO} > 3.3V	
	_	7.3	11	ns	V _{IO} > 2.7V	
	_	8.4	13	ns	V _{IO} > 2.3V	
片选模式时序	•					
	-	_	-	-	CNV/SDI 变为低电平到 SDO 数据有效时间间隔	
t _{EN}	_	-	10	ns	V _{IO} > 3.3V	
	_	-	16	ns	V _{IO} > 2.3V	
t _{DIS}	-	_	20	ns	CNV/SDI/最后一个SCLK下降沿到SDO变为高阻态时间间隔	
tsdicnvst	5	-	-	ns	CNV 上升沿前 SDI 有效的建立时间	
t _{SDICNVHD}	2	-	-	ns	CNV 上升沿后 SDI 有效的保持时间	
级联模式时序						
t _{SDICNVHD}	0	-	-	ns	CNV 上升沿后 SDI 有效的保持时间	
t _{SCKCNVST}	5	-	-	ns	CNV 上升沿前 SCLK 有效的建立时间	
t _{SCKCNVHD}	5	-	-	ns	CNV 上升沿后 SCLK 有效的保持时间	
tsdisckst	2	-	-	ns	SCLK 下降沿前 SDI 有效的建立时间	
tsdisckhd	3	-	-	ns	SCLK 下降沿后 SDI 有效的保持时间	
t _{SDISDOD}	-	-	15	ns	SDI 高电平到 SDO 高电平时间间隔(带繁忙指示器)	

默认测试条件: V_{DD} = 1.71V ~ 1.89V、 V_{IO} = 1.71V ~ 2.3V、 f_{SAMPLE} = 800kSPS、 T_A = -40°C ~ +125°C。

参数	最小	典型	最大	单位	描述	
通用时序				•		
t _{CONV}	-	600	-	ns	CNV 上升沿到转换结果有效的转换时间	
t _{ACQ}	-	400	_	ns	采样时间	
tcyc	1.25	-	_	μs	转换周期	
t _{CNVHW}	10	-	-	ns	CNV 高电平脉冲宽度(片选模式)	
SCLK						
t _{SCKCS}	22	_	_	ns	SCLK 周期(片选模式)	
tscкcн	23	-	-	ns	SCLK 周期(级联模式)	
t _{SCKLW}	6		_	ns	SCLK 低电平脉冲宽度	
t _{SCKHW}	6	-	_	ns	SCLK 高电平脉冲宽度	
t _{SDOHD}	7	-	_	ns	SCLK 下降沿后数据仍有效保持时间	
t _{SDOD}	-	10.9	16.5	ns	SCLK 下降沿到数据有效时间间隔	
片选模式时序				•		
t _{EN}	_	18	40	ns	CNV/SDI 变为低电平到 SDO 数据有效时间间隔	
t _{DIS}	-	_	20	ns	CNV/SDI/最后一个 SCLK 下降沿到 SDO 变为高阻态时间间隔	
t _{SDICNVST}	5	-	_	ns	CNV 上升沿前 SDI 有效的建立时间	
tsdicnvhd	5	-	_	ns	CNV 上升沿后 SDI 有效的保持时间	
级联模式时序				•		
t _{SDICNVHD}	0	-	_	ns	CNV 上升沿后 SDI 有效的保持时间	
t _{SCKCNVST}	5	-		ns	CNV 上升沿前 SCLK 有效的建立时间	
tsckcnvhd	5			ns	CNV 上升沿后 SCLK 有效的保持时间	
t _{SDISCKST}	2	-	-	ns	SCLK 下降沿前 SDI 有效的建立时间	
t _{SDISCKHD}	3	-		ns	SCLK 下降沿后 SDI 有效的保持时间	
tsdisdod	_	-	22	ns	SDI 高电平到 SDO 高电平时间间隔(带繁忙指示器)	

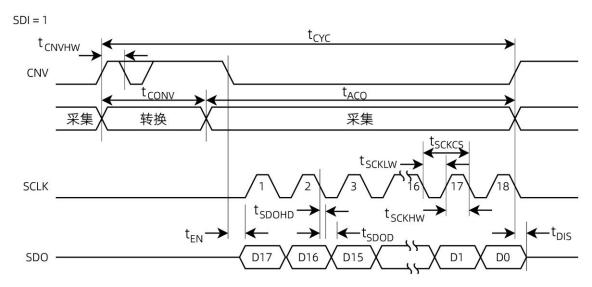


图 1 无繁忙指示三线串行接口时序(片选模式)

图 2 有繁忙指示三线串行接口时序(片选模式)

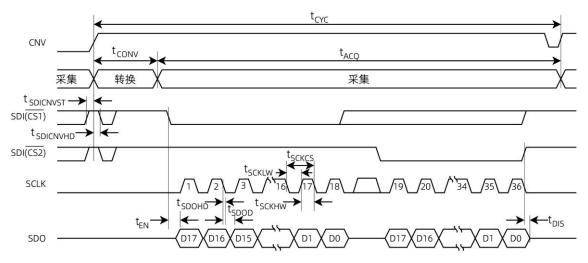


图 3 无繁忙指示四线串行接口时序(片选模式)

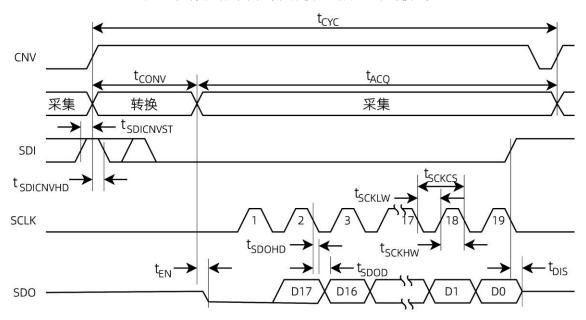


图 4 有繁忙指示四线串行接口时序(片选模式)

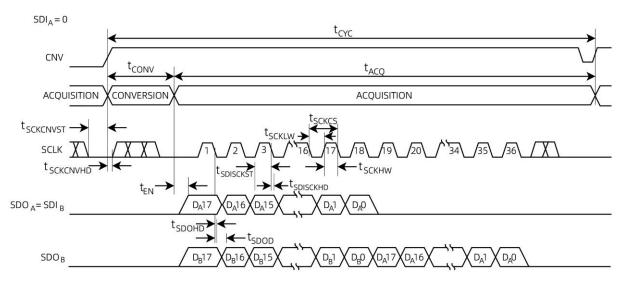
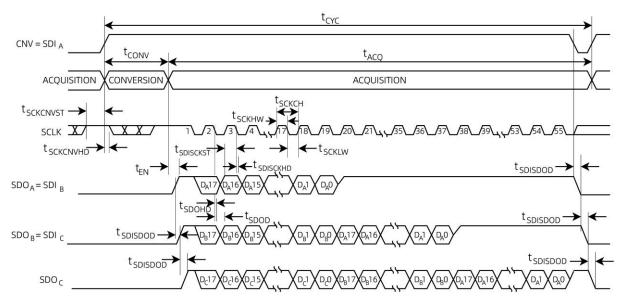
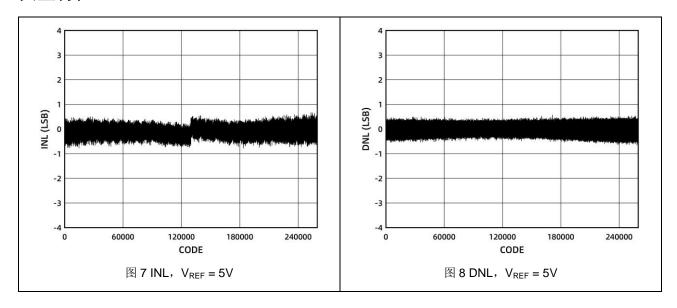
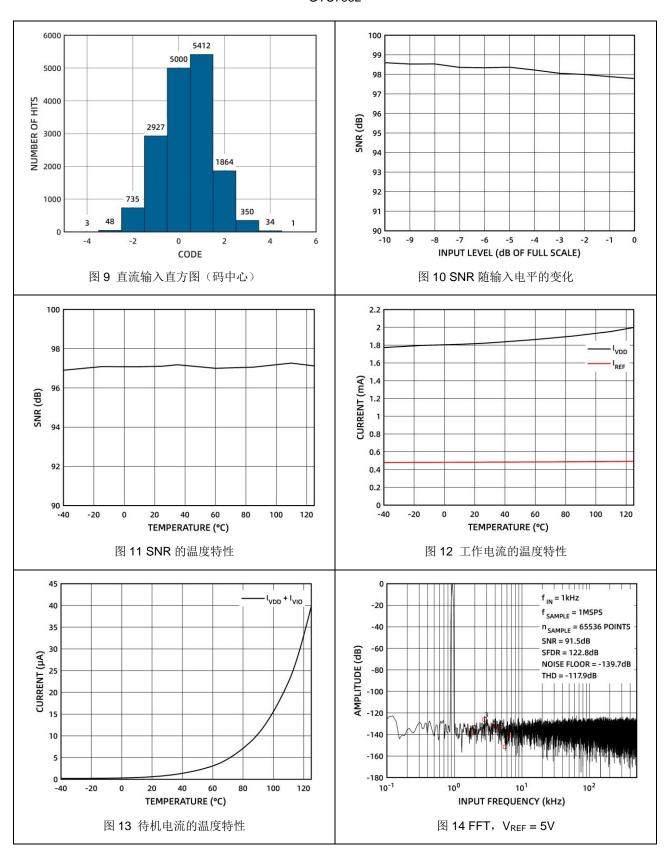
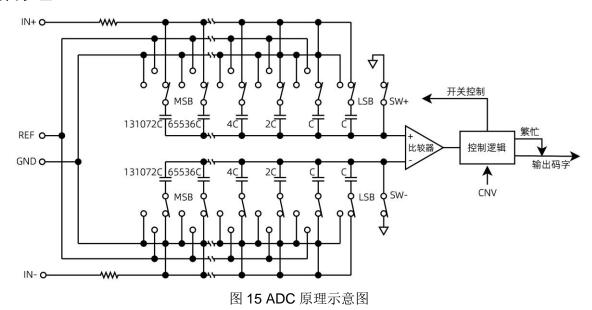


图 5 无繁忙指示串行接口时序(级联模式)


图 6 有繁忙指示串行接口时序(级联模式)

典型特征

工作原理

GYC7982 是一款高速、低功耗、单电源、精密 18 位 SAR ADC,最高转换速率可达 1MSPS,两次转换之间芯片处于关断状态。以 10kSPS 速率工作时,典型功耗为 56.5μW,是电池供电应用的理想选择。GYC7982 为用户提供片内采样保持电路,没有任何流水线延迟,非常适合多通道复用的应用,可与任何1.8V~5V 数字逻辑接口相连,节省空间,配置灵活。

GYC7982 的管脚和 GYC7980 的管脚完全兼容。

转换器操作

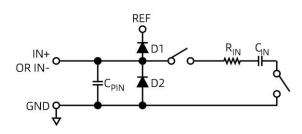
GYC7982 是一款基于电荷再分配 DAC 的 SAR ADC。图 15 显示了该 ADC 的简化电路图。容性 DAC 包含两个完全相同的 18 位二进制加权电容阵列,分别连接到比较器的两个输入端。

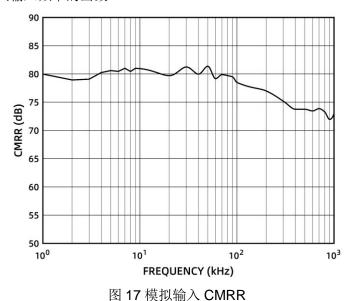
在采样阶段,与比较器输入端相连的电容阵列的顶板通过 SW+和 SW-连接到 GND。所有独立开关都连接到模拟输入端。因此电容阵列用作采样电容,并采集 IN+和 IN-输入端的模拟信号。当采样阶段完成且 CNV 输入变为高电平时,转换阶段启动。当转换阶段开始时,SW+和 SW-首先断开,然后两个电容阵列从输入端断开,并连接到 GND 输入端。采样阶段结束时捕捉到的 IN+和 IN-之间的电压差施加于比较器输入端,将会导致比较器不平衡。电容阵列中的各电容底板在 GND 和 REF 之间切换,比较器输入将按照二进制加权电压步进(V_{REF}/2、V_{REF}/4...V_{REF}/262144)变化。控制逻辑从 MSB 开始切换这些开关,以使比较器重新回到平衡状态。完成此过程后,芯片返回采样阶段,控制逻辑将产生 ADC 输出码和繁忙信号指示。

GYC7982 具有一个片上转换时钟,转换过程不需要串行时钟 SCLK。

模拟输入

图 16 显示了 GYC7982 输入等效电路。两个二极管 D1 和 D2 为模拟输入 IN+和 IN-提供 ESD 保护。注意,模拟输入信号不能超过供电轨 0.3V 以上,否则会造成二极管正偏,并开始传导电流。这些二极管可以处理最高 130mA 的正偏电流。当输入缓冲器的电源与 REF 不同时,可以利用具有过流保护功能的输入缓冲器保护芯片。




图 16 等效模拟输入电路

该模拟输入结构支持 IN+和 IN-之间真差分信号的采样。借助这些差分输入,可以抑制两个输入端的 共模信号,如图 17 所示。

在采样阶段,IN+和 IN-模拟输入电路可看成是 R_{IN} 和 C_{IN} 串联后,整体与输入管脚的寄生电容 C_{PIN} 并 联。 C_{PIN} 是指管脚寄生电容。 R_{IN} 典型值为 400Ω ,由输入串联电阻与采样开关的导通电阻构成。 C_{IN} 典型值为 30pF,是指 ADC 采样电容。

在转换阶段,开关断开,输入阻抗仅包括 C_{PIN} 。 R_{IN} 和 C_{IN} 构成一个单极点低通滤波器,可以降低混叠效应并限制噪声。

当驱动电路的源阻抗较低时,可以直接驱动 GYC7982。较大的源阻抗会显著影响交流特性,特别是 THD,而直流特性对输入阻抗的敏感度较低。源阻抗最大值取决于可容许的总谐波失真 THD。THD 性能下降程度是源阻抗和最大输入频率的函数。

电压基准输入

GYC7982 电压基准输入 REF 端具有动态输入阻抗,因此应利用低阻抗源驱动,REF 与 GND 管脚之间应有效去耦。

利用低输出阻抗基准源电压驱动器驱动 REF 端时,为了使 ADC 实现最佳性能,需要在驱动器输出端加 10μF(X5R)陶瓷电容,而且在 PCB 布局中电容应尽量靠近 ADC 芯片的 REF 端。

如果使用无缓冲基准电压,去耦值取决于所使用的基准电压源。

REF 和 GND 管脚之间不需要额外的低值陶瓷去耦电容(如 100nF)。

传递函数

GYC7982 的理想传递特性如图 18 和表 2 所示。

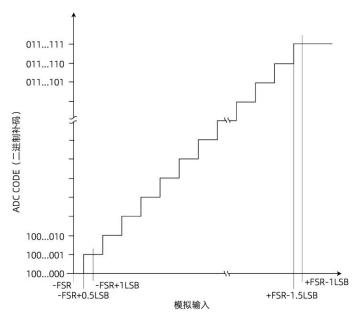


图 18 传递特性

表 2 输出码和理想输入电压

4444	模拟输入			
描述	V _{REF} = 5V	数字输出码(十六进制)		
FSR-1LSB	4.999962V	0x1FFFF		
中间电平+1LSB	38.15μV	0x00001		
中间电平	0V	0x00000		
中间电平−1LSB	-38.15µV	0x3FFFF		
-FSR+1LSB	-4.999962V	0x20001		
-FSR	-5V	0x20000		

驱动放大器

虽然 GYC7982 易于驱动,但驱动放大器仍需满足以下要求:

驱动放大器产生的噪声需尽可能低,以保持 GYC7982 的 SNR 和转换噪声性能。来自驱动器的噪声由 GYC7982 模拟输入电路中 R_{IN} 和 C_{IN} 所构成的单极点低通滤波器进行滤波,或者由外部滤波器(如存在)进行滤波。GYC7982 的典型噪声为 40μV_{RMS},则放大器引起的 SNR 性能降幅为:

SNR_{LOSS} = 20log
$$\left| \frac{40}{\sqrt{40^2 + \frac{\pi}{2} f_{-3dB} (Ne_N)^2}} \right|$$

其中: f_{-3dB} 为 GYC7982 的输入带宽(10MHz),或者输入滤波器(如存在)的截止频率。N 为放大器的噪声增益(例如,缓冲器配置时为 1)。 e_N 为运算放大器的等效输入电压噪声,单位为 $nVI\sqrt{Hz}$ 。

- 对于交流应用,驱动器的 THD 性能应与 GYC7982 相当。
- 对于多通道、多路复用应用,要满足满量程阶跃信号的采样精度,驱动放大器和前端模拟输入电路 必须在采样时间内将采样电容底板电压建立到满量程输入的 18 位精度水平(误差小于 0.0004%, 4ppm)。而常见放大器建立时间的规格是基于建立误差在 0.1%或者 0.01%时测量值,这与 18 位 精度要求不匹配,因此在选择放大器时需要验证建立时间和精度是否足够。

单端转差分驱动器

对于使用单端模拟信号(双极性或单极性)的应用,单端转差分驱动器可以为该芯片提供差分输入,原理见图 19。

R1 和 R2 设置输入范围与 V_{REF} 之间的衰减比。R1、R2 和 C_F 根据所需的输入电阻、信号带宽、抗混叠要求和噪声贡献进行选择。例如,对于 $\pm 10V$ 范围和 $4k\Omega$ 输入阻抗,R2 = $1k\Omega$,R1 = $4k\Omega$ 。

R3 和 R4 设置 IN-输入的共模电压,R5 和 R6 设置 IN+输入的共模电压。共模电压应靠近 $V_{REF}/2$ 。例如,对于使用单电源的±10V 范围,R3 = 8.45kΩ,R4 = 11.8kΩ,R5 = 10.5kΩ,R6 = 9.76kΩ。

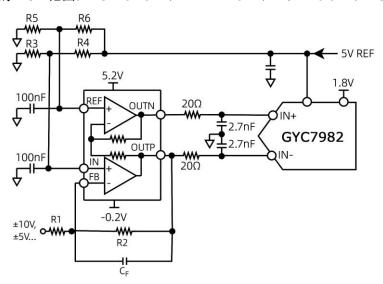


图 19 单端转差分驱动器电路

功耗

GYC7982 使用两个电源管脚: 内核电源 V_{DD} 以及数字输入/输出接口电源 V_{IO} 。 V_{IO} 可以接 $1.8V \sim 5.0V$ 的任意值以适配数字接口逻辑电平。为减少所需的电源数, V_{IO} 和 V_{DD} 管脚可以连在一起。GYC7982 中 V_{IO} 和 V_{DD} 的电源时序无关。此外,该芯片在较宽的频率范围内对电源变化不敏感。

GYC7982 在每个转换阶段结束时自动关断,并且功耗与采样速率成线性比例关系。这使得该芯片非常适合低采样速率(甚至几 Hz)和低功率电池供电的应用。

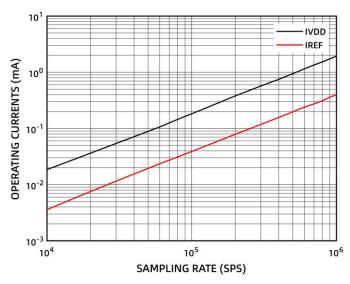


图 20 工作电流随采样率的变化

数字接口

GYC7982 提供了四个数字接口管脚,支持片选和级联两种通信模式。在片选模式下,数字接口兼容 SPI、QSPI、MICROWIRE。在级联模式下,GYC7982 提供了以菊花链方式连接的属性,实现多个 ADC 的级联读取。

数字接口的通信模式取决于 CNV 上升沿时刻的 SDI 电平: 当 CNV 上升沿时,SDI 为高电平,则芯片进入片选模式; 当 CNV 上升沿时,SDI 为低电平,或者 CNV 和 SDI 短接在一起(即同沿变化时),芯片进入级联模式。

芯片同时提供繁忙指示信号供主机作为中断源使用,用于指示主机在何时可以开始读取有效转换结果。主机可通过配置选择是否开启繁忙指示功能:片选模式下,转换结束(EOC)时,如果片选使能(三线串口片选使能为CNV,四线串口片选使能为SDI)为低电平,则芯片繁忙指示信号使能(接口时序参见图 2 和图 4);级联模式下,如果CNV上升沿时,SCLK为高电平,则芯片繁忙指示信号使能(接口时序参见图 6)。

芯片繁忙指示信号开启时,SDO 在转换结束且片选有效后变为低电平,主机以此作为中断源触发读取 ADC 转换结果进程:连续发送 SCLK 时钟,芯片将在 SCLK 下降沿,依次将转换结果的 MSB 到 LSB输出。主机可在 SCLK 下降沿后的上升沿逐个读取 ADC 结果,也可从第二个 SCLK 下降沿开始读取 ADC 结果(只要主机能在数据的保持时间内完成读取,下降沿采样可以获得更高的 SPI 速率)。

芯片繁忙指示信号关闭时,SDO 在转换结束且片选有效后变为当前转换结果的 MSB 电平,随后主机连续发送 SCLK 时钟,芯片将在 SCLK 下降沿,依次将转换结果的 MSB-1 到 LSB 输出。主机可在 SCLK 上升沿或下降沿依次读取转换结果。

片选模式

三线串口无繁忙指示

如果主机可用管脚数量受限,可选择三线串口,如图 21 和图 1 所示。三线串口下,SDI 需固定短接到 V_{IO} 电平。CNV 既作为转换启动信号,也作为片选使能信号。CNV 上升沿启动转换,转换结束后,CNV 低电平将选中当前芯片,用于转换结果输出。在转换结束时(EOC),片选使能 CNV 必须为高电平,确保芯片的繁忙指示信号不被开启。此模式下,主机最少可发送 17 个 SCLK 时钟下降沿,将转换结果输出。在转换期间或片选使能 CNV 为高电平期间,SDO 都将保持高阻态输出。在转换结束后,主机发送完 18 个 SCLK 下降沿后,SDO 也将返回高阻态。

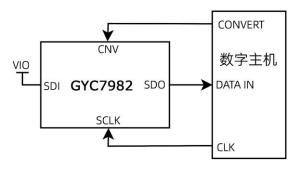


图 21 三线串口无繁忙指示连接图(片选模式)

三线串口有繁忙指示

与三线串口无繁忙指示的区别在于:转换结束时(EOC),片选使能 CNV 为低电平。此时芯片繁忙指示信号将被开启。主机将至少发送 18 个 SCLK 时钟下降沿,才可将转换结果全部输出。在第 19 个下降沿后,SDO 返回高阻态,如图 22 和图 2 所示。

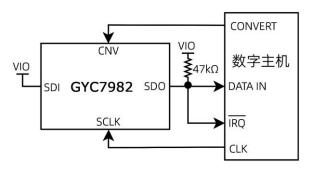


图 22 三线串口有繁忙指示连接图(片选模式)

四线串口无繁忙指示

如配置为此模式时,SDI将作为片选使能,CNV仅作为转换启动信号。CNV上升沿启动转换,转换结束后,SDI低电平将选中当前芯片,用于转换结果输出。在转换结束时(EOC),片选使能 SDI 必须为高电平,确保芯片的繁忙指示信号不被开启。此模式下主机最少可发送 17个 SCLK 时钟下降沿,将转换结果输出。在转换期间或片选使能 SDI 为高电平期间,SDO 都将保持高阻态输出。在转换结束后,主机发送完 18个 SCLK 下降沿后,SDO 也将返回高阻态,如图 23 和图 3 所示。

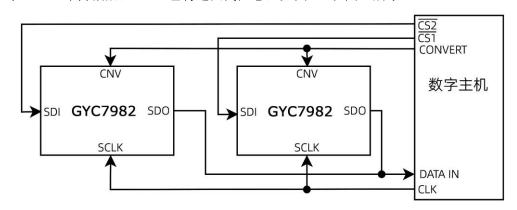


图 23 四线串口无繁忙指示连接图(片选模式)

四线串口有繁忙指示

如要配置为此模式,需在转换结束 (EOC) 时,片选使能 SDI 为低电平。主机将至少发送 16 个 SCLK 时钟下降沿,才可将转换结果全部输出。在第 19 个下降沿后,SDO 返回高阻态,如图 24 和图 4 所示。

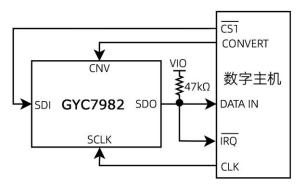


图 24 四线串口有繁忙指示连接图(片选模式)

级联模式

无繁忙指示

要配置为此模式,需在 CNV 上升沿,SCLK 保持为低电平。随后在主机读取完本次转换结果前,CNV 都应保持高电平,以确保数据接口的正确性。转换结束时(EOC),MSB 数据将被输出到 SDO。在主机 发送的 SCLK 下降沿,依次将剩余的 MSB-1 到 LSB 数据输出。级联模式下,各级联芯片的 SDI 和 SDO 首尾相接,前一级的转换结果首先被移位输出到下一级,待下一级的转换结果输出后再依次输出。因此对于 N 个 ADC 级联的场景,需要提供 18 × N 个时钟,才能回读完所有芯片的转换结果,如图 25 和图 5 所示。

有繁忙指示

该模式下,如果 SCLK 在 CNV 上升沿保持高电平,则开启繁忙指示信号。在转换结束时,SDO 会变为低电平输出,作为中断源提供给主机,用于主机进程触发 SCLK 的发送,读取转换结果。相较于无繁忙指示模式,由于 MSB 不会被提前放置到 SDO 上,必须通过 SCLK 下降沿输出。因此对于 N 个 ADC 级联的场景,需要提供 16 × N + 1 个时钟,才能回读完所有芯片的转换结果,如图 26 和图 6 所示。

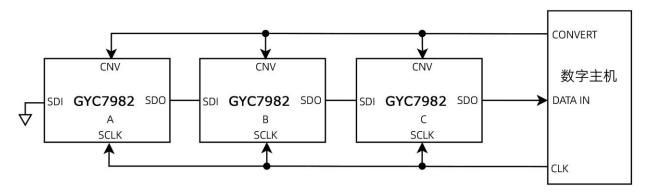


图 25 无繁忙指示连接图(级联模式)

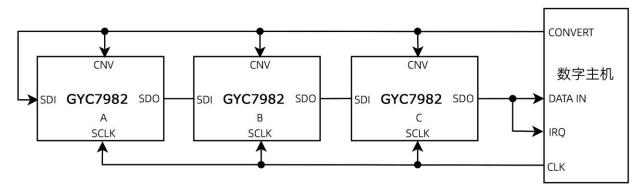
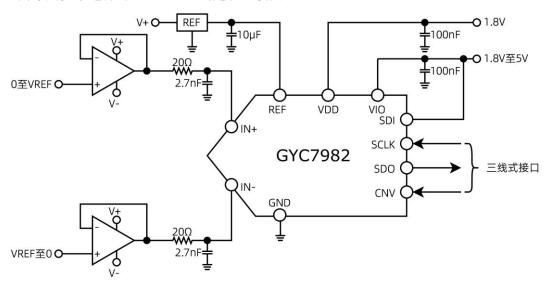
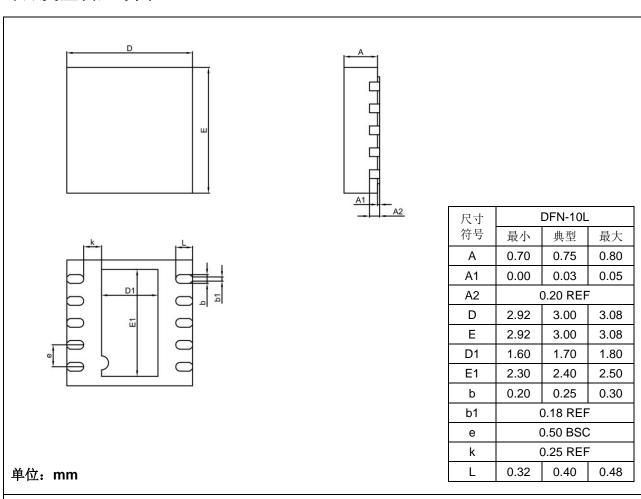


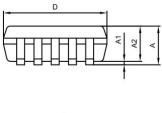
图 26 有繁忙指示连接图 (级联模式)

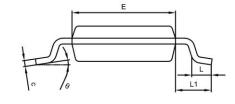
应用

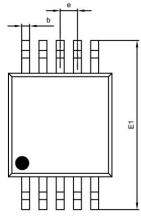
典型连接

图 27 为采用多个电源时 GYC7982 的建议连接图。


图 27 采用多个电源的典型应用电路


订购信息


系列名称	产品型号	工作温度	封装形式	质量等级
	GYC7982DF10I+	-40°C ~ +125°C	DFN-10L	工业扩展级
	GYC7982DF10M	-55°C ~ +125°C	DFN-10L	普军级
0.7000	GYC7982DF10N1	-55°C ~ +125°C	DFN-10L	GJB7400 N1 级
GYC7982	GYC7982MSI+	-40°C ~ +125°C	MSOP-10L	工业扩展级
	GYC7982MSM	-55°C ~ +125°C	MSOP-10L	普军级
	GYC7982MSN1	-55°C ~ +125°C	MSOP-10L	GJB7400 N1 级

外形类型及尺寸图

尺寸	MSOP-10L					
符号	最小	典型	最大			
Α	0.82	0.96	1.10			
A1	0.02	0.09	0.15			
A2	0.75	0.85	0.95			
b	0.18	0.23	0.28			
С	0.09	0.16	0.23			
D	2.90	3.00	3.10			
Е	2.90	3.00	3.10			
E1	4.75	4.90	5.05			
е	0.50 BSC					
L	0.40	0.60	0.80			
L1	0.95REF					
θ	0°	3°	6°			

单位: mm