

GYG1963

1.5A 快速动态响应低噪声 LDO

概述

GYG1963 是一款低压差稳压器,专为快速瞬态响应而优化。该装置能够提供 1.5A 的输出电流,典型压降为 160mV。工作静态电流为 1mA,关机时降至 1μA 以下,同时压差模式下静态电流控制良好。除了快速瞬态响应外,GYG1963 还具有 9.8μV_{RMS} 的低输出电压噪声和高达 75dB 的电源纹波抑制比,这使得该器件非常适合敏感的射频电源和医疗影像应用。

输出电压范围为 1.21V 至 20V。GYG1963 稳压器稳定,输出电容低至 10μF。内部保护电路包括电流限制和热限制。该器件有 1.5V、1.8V、2.5V、3.3V、5V 的固定输出电压,以及 1.21V参考电压的可调输出电压。GYG1963 稳压器有TO263-5、SOP8、eTSSOP16 的封装,可工作在-55°C 至+125°C 温度范围。

应用领域

- 医学和影像应用
- 开关电源级联稳压器

特性说明

- 优化快速瞬态响应
- 输出电流: 1.5A
- 压差电压: 1.5A时为160mV
- 低噪声: 9.8µV_{RMS} (10Hz ~ 100kHz)
- 电源抑制比: 75dB/62dB(100Hz/100kHz)
- 1mA 静态电流
- 宽输入电压范围: 1.9V~20V
- 压差模式下静态电流小
- 固定输出电压: 1.5V、1.8V、2.5V、3.3V、5V
- 1.21V ~ 20V的可调输出
- < 1µA 关机时的静态电流
- 支持最小 10µF 输出电容稳定
- 支持陶瓷输出电容稳定
- 热限制

技术说明

引脚图、引出端功能

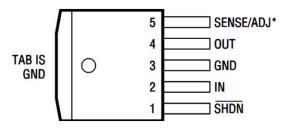


图 1 TO263-5L 引脚图

TO263-5L 引出端功能

引脚名称	引脚序号	说明		
SHDN	1	关机引脚。将此引脚拉至高电平可以使能器件。将此引脚拉至低电平可禁用该器件。如果不需要使能功能,则必须将此引脚连接到 IN		
IN	2	输入引脚。从 IN 引脚到地需要一个 10μF 或者更大的陶瓷电容(7μF 或更大的电容)来降低输入的阻抗。将输入电容尽可能放置在靠近输入的位置。相关详细信息,请参考输入和输出电容选择		
GND	3	地		
OUT	4	稳压输出引脚。为了保持稳定性,需要在该引脚到 GND 之间(尽可能靠近引脚)放置一个 10μF 或更大的陶瓷电容器,将 OUT 引脚到负载的阻抗降至最低。相关详细信息,请参考输入和输出电容选择		
SENSE/ADJ	5	反馈引脚连接到误差放大器。SENSE 引脚用于固定输出电压版本。ADJ 引脚电压相对于地为 1.21V,外部可调输出电压范围为 1.21V ~ 20V		
EPAD	-	裸露焊盘。将此焊盘连接到大面积接地层。本焊盘内部连接到GND		

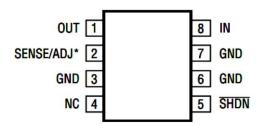


图 2 SOP-8L 引脚图

SOP8 引出端功能

引脚名称	引脚序号	说明		
OUT	1	稳压输出引脚。为了保持稳定性,需要在该引脚到 GND 之间(尽可能靠近引脚)放置一个 10μF 或更大的陶瓷电容器,将 OUT 引脚到负载的阻抗降至最低。相关详细信息,请参考输入和输出电容选择		
SENSE/ADJ	2	反馈引脚连接到误差放大器。SENSE 引脚用于固定输出电压版本。ADJ 引脚电压相对于地为 1.21V,外部可调输出电压范围为 1.21V ~ 20V		
GND	3, 6, 7	地		
NC	4	不连接		
SHDN	5	关机引脚。将此引脚拉至高电平可以使能器件。将此引脚拉至低电平可禁用该器件。如果不需要使能功能,则必须将此引脚连接到 IN		
V _{OUT}	8	输入引脚。从IN引脚到地需要一个10μF或者更大的陶瓷电容(7μF或更大的电容)来降低输入的阻抗。将输入电容尽可能放置在靠近输入的位置。相关详细信息,请参考输入和输出电容选择		

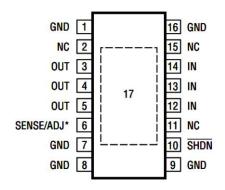


图 3 eTSSOP-16L 引脚配置

eTSSOP-16L 引出端功能

引脚名称	引脚序号	说明	
GND	1, 7, 8, 9, 16	地	
NC	2, 11, 15	不连接	
OUT	3, 4, 5	稳压输出引脚。为了保持稳定性,需要在该引脚到GND之间(尽可能靠近引脚)放置一个10µF或更大的陶瓷电容器,将OUT引脚到负载的阻抗降至最低。相关详细信息,请参考输入和输出电容选择	
SENSE/ADJ	6	反馈引脚连接到误差放大器。SENSE 引脚用于固定输出电压版本。ADJ 引脚电压相对于地为 1.21V,外部可调输出电压范围为 1.21V ~ 20V	
SHDN	10	关机引脚。将此引脚拉至高电平可以使能器件。将此引脚拉至低电平可禁用该器件。如果不需要使能功能,则必须将此引脚连接到 IN	
IN	12, 13, 14	输入引脚。从IN引脚到地需要一个10μF或者更大的陶瓷电容(7μF或更大的电容)来降低输入的阻抗。将输入电容尽可能放置在靠近输入的位置。相关详细信息,请参考输入和输出电容选择	
EPAD	17	裸露焊盘。将此焊盘连接到大面积接地层。本焊盘内部连接到GND	

内部功能框图

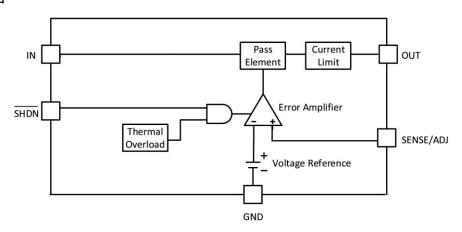


图 4 内部功能框图

绝对最大额定值

V _{IN} , SHDN	~ GND ·····	··· -0.3V ~ ·	+22∖
V _{out} ~ GNE)	··· -0.3V ~	+22\
SENSE/AD	J ~ GND	····-0.3V ~	+6\
存储温度范围	ā ······	-65°C ~ +1	50°C
工作温度范围	=	-55°C ~ +1	25°C

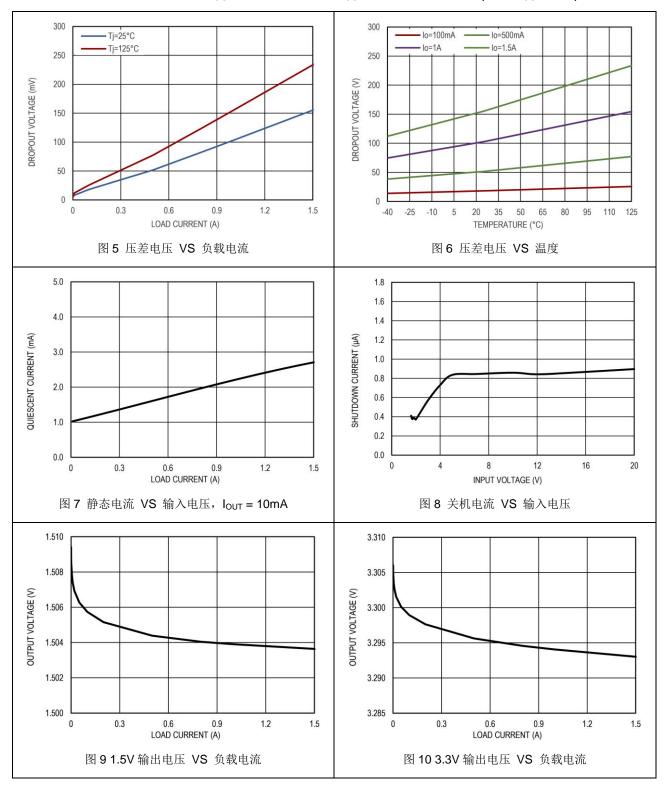
热阻

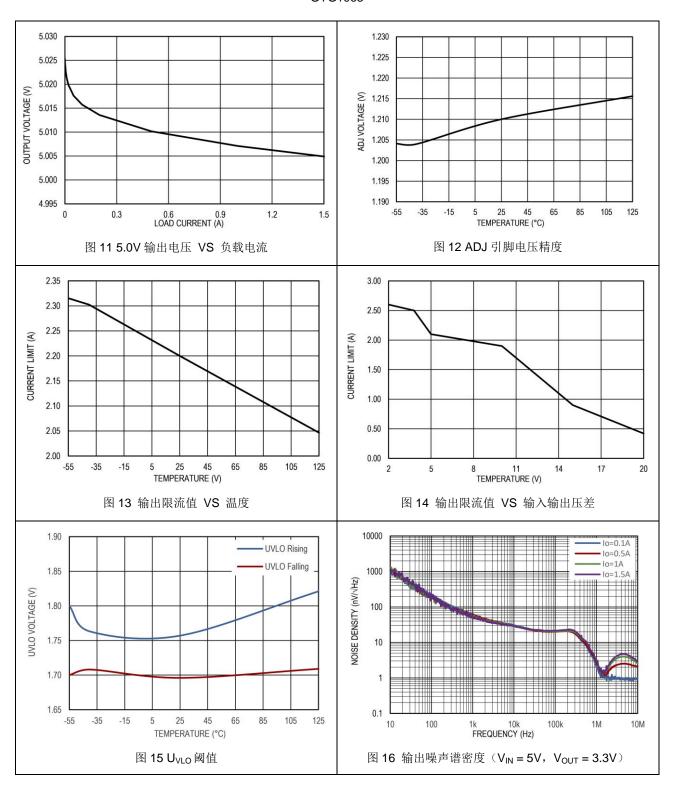
封装类型	θ _{JA}	单位
TO263-5L	30	°C/W
SOP-8L	67	°C/W
eTSSOP-16L	38	°C/W

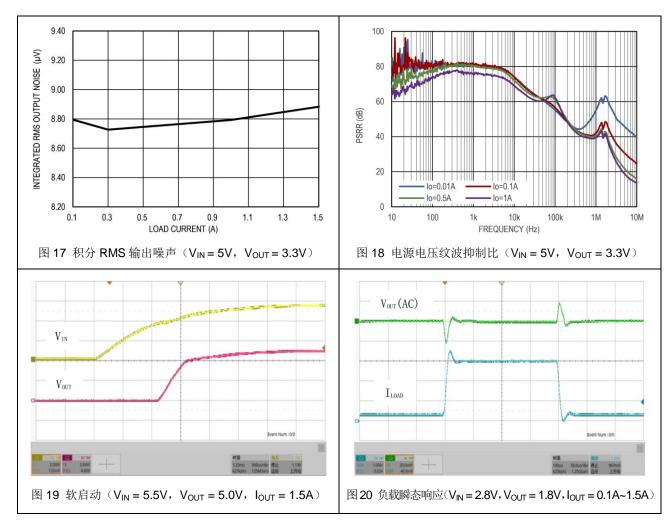
注: θ」A 适用于最坏情况,即器件焊接在电路板上以实现表贴封装

参数列表

除非另有说明 V_{IN} = 最大值(V_{OUT} +0.5V,1.9V), C_{IN} = 10 μ F, C_{OUT} = 10 μ F, $V_{OUT(nom)}^{[1]}$ = 1.21V, I_{OUT} = 10mA, T_{J} = -55°C ~ +125°C(对于最小/最大值规格), T_{A} = 25°C(对于典型规格)。


参数	条件	最小	典型	最大	单位
IN U _{VLO} 上升阈值 (V _{UVLO_RISING})	V _{IN} 上升	-	1.75	1.89	V
IN U _{VLO} 下降阈值 (V _{UVLO_FALLING})	V _{IN} 下降	1.55	1.68	-	V
	$I_{LOAD} = 0mA$	-	0.9	1.7	mA
GND 引脚电流(I _{GND})	I _{LOAD} = 100mA	-	1.4	2.2	mA
	I _{LOAD} = 1.5A	-	2.7	3.9	mA
关机电流(I _{SHUTDOWN})	$V_{IN} = 6V$, $V_{SHDN} = 0V$ $T_J = 25$ °C	-	0.9	10	μA
ADJ 引脚精度(V _{ADJ})	-1.9V < V _{IN} < 20V 1mA < I _{LOAD} < 1.5A	1.18	1.21	1.24	V
固定输出电压精度 (V _{SENSE})	最大值(V _{OUT} +0.5V,1.9V) < V _{IN} < 20V 1mA < I _{LOAD} < 1.5A	-2	-	2	%
输出电压调节(ΔV _{OUT_LINE})	V _{IN} = 最大值(V _{OUT} +0.5V, 1.9V)~ 20V,I _{LOAD} = 10mA	ı	2	8	mV
负载调节(ΔV _{OUT_LOAD})	1mA ≤ I _{OUT} ≤1.5A	1	3	15	mV
压差电压(Vpo)	$V_{IN} = 3.3V$, $I_{OUT} = 100 mA$ $V_{FB} = 0.5V - 3\%$	ı	70	146	mV
压左电压(VDO)	$V_{IN} = 3.3V$, $I_{OUT} = 1.5A$ $V_{FB} = 0.5V-3\%$	ı	160	270	mV
输出电流限制(I _{LIM})	V _{OUT} 外加0.9 × V _{OUT(nom)} V _{IN} = V _{OUT(nom)} +0.5V	-	2.2	-	Α
SHDN引脚低电平输入电压 (V _{SHDN_IL})	-	0.49	0.75	ı	V
SHDN 引脚高电平输入电压 (V _{SHDN_IH})	-	-	0.79	1.1	V
I _{SHDN}	$V_{IN} = 20V, T_J = 25^{\circ}C$	-	50	750	nA
由循連价值性I/POPP\	$f = 100Hz, I_{LOAD} = 1.5A$ $V_{OUT} - V_{OUT} = 1V$	_	80	_	dB
电源波纹抑制(PSRR)	$f = 10kHz$, $I_{LOAD} = 1.5A$ $V_{OUT} - V_{OUT} = 1V$	-	75	-	dB
输出电压噪声(V _N)	带宽 = 10Hz ~ 100kHz I _{OUT} = 1.5A	_	9.8	_	μV _{RMS}
热关断温度(T _{SD})	关机阈值,温度上升	-	155	-	°C
热关断温度(T _{SD_HYS})	开机阈值,温度下降	_	15	_	°C


注^[1]: V_{OUT(nom)}是可编程引脚中计算得出的 V_{OUT} 目标值。在可调配置中,V_{OUT(nom)}是由外部反馈电阻设置的预期 V_{OUT} 值注: 当器件连接到 FB 引脚上的外部反馈电阻时,不包括外部电阻容差


注: 本器件未在 V_{IN} > V_{OUT} + 1.7V 和 I_{OUT} = 1.5A 条件下测试过,因为功耗大于封装的最高额定值

典型性能参数

除非另有说明, V_{IN} = 最大值(V_{OUT} +0.5V,1.9V), I_{OUT} = 10 μ F, C_{IN} = 10 μ F, C_{OUT} = 10 μ F

工作原理

GYG1963 是针对快速瞬态响应而优化的 1.5A 低压差稳压器。该器件可在最大 270mV 的压差电压下提供 1.5A 负载电流。停机时,工作静态电流 1mA 降至 1μA 以下。除了低静态电流外,GYG1963 稳压器还具有多种保护功能,使其能够安全运行。

输出电压噪声

GYG1963 稳压器设计用于在满负荷运行时,在 10Hz 至 100kHz 的带宽上提供低输出电压噪声。在 该频率范围内,对于可调版本,使用电阻分压器产生更高的输出电压,输出电压噪声会相应增大。这导致 GYG1963 在 10Hz 至 100kHz 带宽范围内的积分噪声为 9.8μV_{RMS},噪声在 3.3V 输出下增加到 27μV_{RMS},而固定输出版本的噪声变化较小。

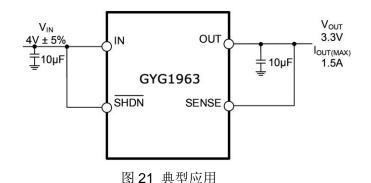
如果不注意电路布局和测试,可能会测量到更高的输出电压噪声值。来自附近走线的串扰可能会在 GYG1963 的输出上产生不必要的噪声。还必须考虑电源纹波抑制; GYG1963 稳压器没有无限制的电源抑制,从而会将一小部分输入噪声传递到输出。

过载恢复

GYG1963 具有安全工作区域保护。当输入到输出电压增加时,安全区域保护功能将降低电流限制, 并将功率晶体管保持在所有输入到输出电压值的安全工作区域内。该保护设计用于在设备击穿之前的所有 输入输出电压值下提供一定的输出电流。 当电源第一次接通时,随着输入电压的升高,输出跟随输入,允许稳压器启动到非常重的负载情况下。在启动过程中,随着输入电压的升高,输入到输出的电压差很小,允许稳压器提供较大的输出电流。对于高输入电压,可能会出现一个问题,即输出短路的消除后输出电压并未恢复。其他稳压器也表现出这种现象,因此这并非 GYG1963 所独有。

当输入电压较高而输出电压较低时,输出负载较重时会出现问题。常见情况发生在短路消除后,或者在输入电压已接通后,将关机引脚拉高时。输出电压和负载可能在两点处与输出电流曲线相交。如果发生这种情况,稳压器有两个稳定的输出工作点。在这种情况下,可能需要将输入电源降到零,然后再次调高,使输出恢复。

欠压锁定(U_{vio})


 U_{VLO} 电路监视输入电压,以防止器件在 V_{IN} 高于 V_{UVLO} 之前导通。当 V_{IN} 低于锁定电压迟滞时, U_{VLO} 电路还会禁用器件的输出。如果 V_{IN} 下降, U_{VLO} 电路将被激活以禁用器件的输出。

过温保护(OTP)

GYG1963 实现了热关断保护。当结温(T_J)超过 155°C(典型值)时,该器件将被禁用。当温度下降 15°C(典型值)时,稳压器会自动再次打开。

为了可靠运行,请将结温限制在最大 125°C。连续运行 GYG1963 直至进入热关机状态或结温高于 125°C 会降低长期可靠性。

典型应用

应用信息

GYG1963 是一款高电流、低噪声、高精度、低压差线性稳压器,能够为 1.5A 供电,最大输出电压为 270mV。输入电压工作范围为 1.9V 至 20V。固定输出电压为 1.21V 至 5.0V。通过设置外部电阻,可调输 出电压为 1.21V 至 20V。

输出电压设置

GYG1963 的输出电压可以通过外部电阻器设置。输出电压由 R1 和 R2 的值决定,如图 22 所示。R1 和 R2 的值可通过以下公式计算。请注意,在关机时,输出被关闭,分压电阻器电流为零。

$$V_{OUT} = 1.21 \times \frac{R1 + R2}{R2}$$

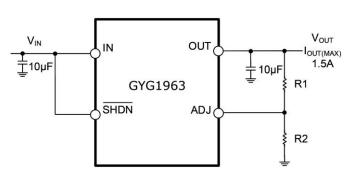


图 22 由外部电阻决定的输出电压

电源建议

GYG1963 器件设计用于在 1.9V 至 20V 的输入电压电源范围内工作。输入电压范围为器件提供了足够的裕量,以便获得稳定的输出。如果输入电源噪声很大,则具有低 ESR 的额外输入电容可能有助于改善输出噪声性能。

压差电压

压差是指在特定输出电流下工作时,IN 和 OUT 引脚之间的电压差。压差电压 V_{DO} 也可以表示为功率 开关在特定输出电流下的压降,而功率开关完全在非饱和区域工作时,功率开关可以表征为电阻 $R_{DS}(ON)$ 。因此压差可以定义为 $(V_{DO} = V_{IN} - V_{OUT} = R_{DS}(ON) \times I_{OUT})$ 。对于正常工作,建议 LDO 工作范围为 $(V_{IN} > V_{OUT} + V_{DO})$,以获得良好的瞬态响应和 PSRR 性能。换句话说在压差区域运行时,性能将严重下降。

输入和输出电容选择

GYG1963 设计用于支持低等效串联电阻(ESR)陶瓷电容器。推荐使用 X7R、X5R 和 COG 级陶瓷电容器,因为它们在整个温度范围内具有良好的电容稳定性,而使用 Y5V 额定电容器则因电容变化较大而变得不正常。但是,陶瓷电容会随工作电压和温度而变化,设计工程师必须了解这些特性。建议使用不低于 10μF(22μF 或更大的有效电容)的电容器,以确保稳定性。PCB 走线阻抗也有助于提高电容的稳定性。如果需要更大的电容(大于 22μF)请将额外的电容器放在 2 英寸之后,并使用小于 0.25 英寸的走线连接。选择输入电容是为了最大限度地减少负载电流阶跃期间的瞬态输入压降。对于一般应用,强烈建议使用至少 10μF 的输入电容来实现最小的输入阻抗。如果 GYG1963 和输入电源之间的走线感应较高,则快速的负载瞬态变化可能会导致输入电压电平振铃,并超过绝对最大额定电压,从而损坏器件。增加更多的输入电容可以限制振铃,并使其不超过器件的绝对最大额定值。

将这些电容器放置在尽可能靠近引脚的位置,以优化性能并确保稳定性。

散热注意事项

热保护限制了 GYG1963 的功耗。当功率开关上的功耗过大($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$)导致工作结温超过 155°C 时,OTP 电路启动动态关断功能并关闭功率开关。结温冷却 15°C 后,功率开关再次导通。当输出发生短路时,GYG1963 输出电压将关闭至零。这可降低芯片温度,并最终在发生输出短路时为用户提供最大的安全性。

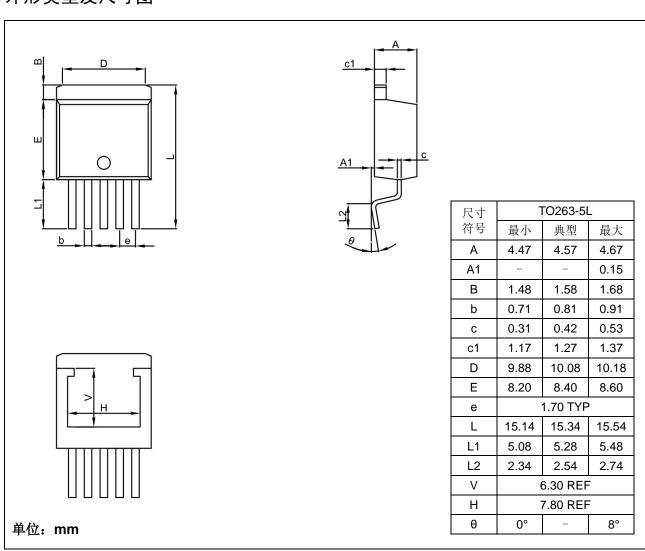
结温不应超过绝对最大额定值下列出的绝对最大结温 T_J (MAX),以避免对器件造成永久性损坏。最大允许功耗取决于 IC 封装的热阻、PCB 布局、周围气流速率以及结与环境温度之间的差异。最大功耗可以使用公式计算: $P_{D(MAX)} = (T_{J(MAX)} - T_A) \div \theta_{JA}$

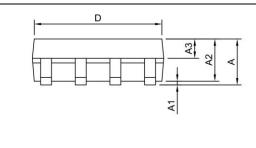
其中 T_J (MAX)是最大结温, T_A 是环境温度, θ_{JA} 是结到环境热阻。

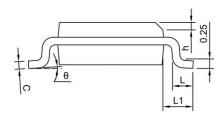
对于连续工作,绝对最大额定值指示的最大工作结温为 125°C。结邻环境热阻 θ_{JA} ,高度依赖于封装。对于 8 引脚 SOP-8 封装,标准 JEDEC51-7 高有效导热四层测试板上的热阻 θ_{JA} ,为 46.4°C/W, $T_A=25$ °C 时的最大功耗可以使用公式计算: $P_{D(MAX)}=(125$ °C -25°C) ÷ (46.4°C/W) = 2.2W

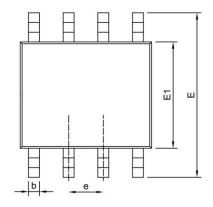
最大功率耗散取决于固定 T_J (MAX)的工作环境温度和热阻 θ_{JA} 。最大功耗将随着环境温度的升高而降低。

布局指南

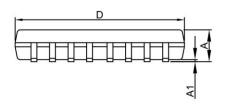

- 为了获得最佳性能,所有线路应尽可能短。
- 对输入、输出和接地使用宽导线或者敷铜,将寄生电气效应降至最低。
- 建议最小输出电容为 $10\mu F$,ESR 小于等于 3Ω ,以防止振荡。首选 X5R 或 X7R 电介质。
- 将输出电容器尽可能靠近输出引脚。
- 暴露的散热焊盘应连接到一个较宽的接地层,以便有效散热。

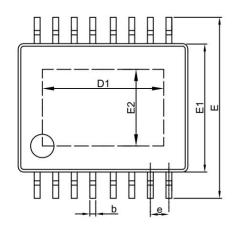

订购信息


系列名称	产品型号	工作温度	封装形式	质量等级
	GYG1963-ADJPTC5I+	-40°C ~ +125°C	TO263-5L	工业扩展级
	GYG1963-ADJPTC5IM	-55°C ~ +125°C	TO263-5L	普军级
	GYG1963-ADJPTC5N1	-55°C ~ +125°C	TO263-5L	GJB7400 N1 级
	GYG1963-ADJSI+	-40°C ~ +125°C	SOP-8L	工业扩展级
	GYG1963-ADJSM	-55°C ~ +125°C	SOP-8L	普军级
GYG1963-ADJ	GYG1963-ADJSN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYG1963-ADJETSI+	-40°C ~ +125°C	eTSSOP-16L	工业扩展级
	GYG1963-ADJETSM	-55°C ~ +125°C	eTSSOP-16L	普军级
	GYG1963-ADJETSN1	-55°C ~ +125°C	eTSSOP-16L	GJB7400 N1 级
	GYG1963-ADJCUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYG1963-ADJCUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级
	GYG1963-1.5SI+	-40°C ~ +125°C	SOP-8L	工业扩展级
	GYG1963-1.5SM	-55°C ~ +125°C	SOP-8L	普军级
GYG1963-1.5	GYG1963-1.5SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYG1963-1.5CUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYG1963-1.5CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级
	GYG1963-1.8SI+	-40°C ~ +125°C	SOP-8L	工业扩展级
	GYG1963-1.8SM	-55°C ~ +125°C	SOP-8L	普军级
GYG1963-1.8	GYG1963-1.8SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYG1963-1.8CUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYG1963-1.8CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级
	GYG1963-2.5SI+	-40°C ~ +125°C	SOP-8L	工业扩展级
GYG1963-2.5	GYG1963-2.5SM	-55°C ~ +125°C	SOP-8L	普军级
	GYG1963-2.5SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级

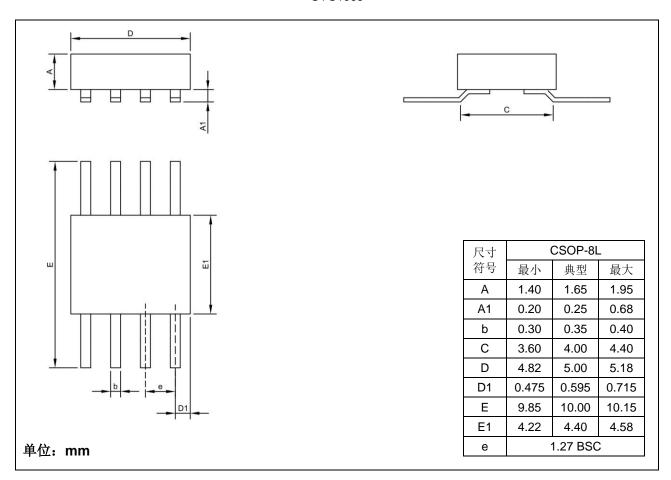

系列名称	产品型号	工作温度	封装形式	质量等级
GYG1963-2.5	GYG1963-2.5CUM	-55°C ~ +125°C	CSOP-8L	普军级
G1G1963-2.5	GYG1963-2.5CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级
	GYG1963-3.3SI+	-40°C ~ +125°C	SOP-8L	工业扩展级
	GYG1963-3.3SM	-55°C ~ +125°C	SOP-8L	普军级
GYG1963-3.3	GYG1963-3.3SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYG1963-3.3CUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYG1963-3.3CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级
	GYG1963-5PTC5I+	-40°C ~ +125°C	TO263-5L	工业扩展级
	GYG1963-5PTC5M	-55°C ~ +125°C	TO263-5L	普军级
	GYG1963-5PTC5N1	-55°C ~ +125°C	TO263-5L	GJB7400 N1 级
GYG1963-5	GYG1963-5SI+	-40°C ~ +125°C	SOP-8L	工业扩展级
G1G1963-5	GYG1963-5SM	-55°C ~ +125°C	SOP-8L	普军级
	GYG1963-5SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYG1963-5CUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYG1963-5CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级

外形类型及尺寸图




尺寸	SOP-8L			
符号	最小	典型	最大	
Α	1.45	1.60	1.75	
A1	0.10	0.18	0.25	
A2	1.35	1.45	1.55	
А3	0.60	0.65	0.70	
b	0.33	0.42	0.51	
С	0.17	0.21	0.25	
D	4.70	4.90	5.10	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.27 BSC			
h	0.25	-	0.50	
L	0.40		1.27	
L1	1.05 REF			
θ	0° - 8°			

单位: mm


尺寸

符号	最小	典型	最大	
Α			1.10	
A1	0.05	0.10	0.15	
b	0.19	ı	0.30	
С	0.09	-	0.20	
D	4.90	5.00	5.10	
D1	3.58 REF			
Е	•	6.40 BSC	;	
E1	4.30 4.40		4.50	
E2	2.94 REF			
е	0.65 BSC			
L	0.50	ı	0.75	
L1	1.00 BSC			
θ	0° –		8°	

eTSSOP-16L

单位: mm

