

GYG1964

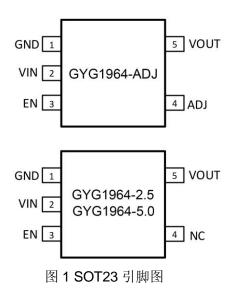
-10V/200mA、微功耗、低噪声 LDO

概述

GYG1964 是一款微功率、低噪声、低压差负调压器。该装置能够提供 200mA 的输出电流,压降为 88mV。低静态电流(30μA 工作和 3μA 关机)使 GYG1964 成为电池供电应用的最佳选择,并且静态电流在低压差工况下得到了很好的控制。

GYG1964 的其他特点包括低输出噪声。在 10Hz 至 100kHz 的带宽内,输出噪声降低至 10µVRMS,因而特别适合给高性能模拟和混合信号电路供电。GM1964 能够支持小电容工作,并且在小输出电容值的情况下与其他线性稳压电源一样稳定工作。支持小型陶瓷电容器,无需额外增加 ESR。内部保护电路包括电流限制和热限制。该设备的固定输出电压为-2.5V 和-5V,可调参考电压为-1.186V。

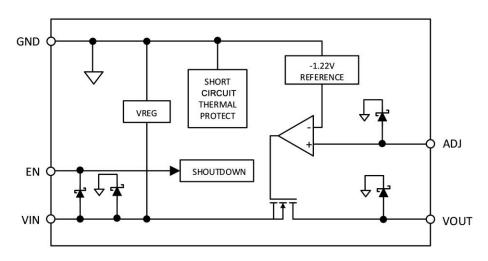
应用领域


- 低噪声放大器
- 超低噪声仪表
- 电池供电系统
- 功放、ADC和DAC
- 通信和基础设施
- 医疗和保健

特性说明

- 超低 RMS 噪声: 10μV_{RMS}
- 输出电流: 200mA
- 宽输入电压范围: -2.5V ~ -10V
- 输出电压范围: -1.186V ~ -10V+V_{DO}
- 固定-2.5V和-5V输出电压
- ±1%初始精度
- 3uA关断电流
- 30µA静态地电流
- 低压差电压: 88mV
- 最小输出电容: 2.2μF(陶瓷)
- 限流和过温保护

技术说明


引脚图

引脚定义

GYG1964-ADJ		GYG1964-2.5 GYG1964-5.0		说明	
引脚名称	引脚序号	引脚名称	引脚序号		
GND	1	GND	1	地	
V_{IN}	2	V _{IN}	2	稳压器输入电源。使用2.2μF或更大的电容旁路V _{IN~} GND	
EN	3	EN	3	将EN驱动至地电平2V以上或以下,可使能稳压器;或者将EN驱动至低电平,可关闭稳压器。若要实现自动启动,请将EN接V _{IN}	
-	-	NC	4	不连接	
ADJ	4	_	_	可调输入,外部电阻分压器设置输出电压	
V _{OUT}	5	V _{OUT}	5	调节输出电压,使用2.2μF或更大的电容旁路V _{OUT} ~ GND	

内部功能框图

绝对最大额定值

V _{IN} ~ GND	+0.3V ~ -12V
V _{OUT} ~ GND ······	-0.3V ~ V _{IN}
EN ~ GND ·····	+5V ~ V _{IN}
EN ~ V _{IN}	+12V ~ -0.3V
ADJ ~ GND	
工作温度	
存储温度	

热阻

封装类型	θJA	θις	$\Psi_{ m JB}$	单位
SOT23-5	170	不适用	43	°C/W

注: θ_{JA} 适用于最坏情况,即器件焊接在电路板上以实现表贴封装。

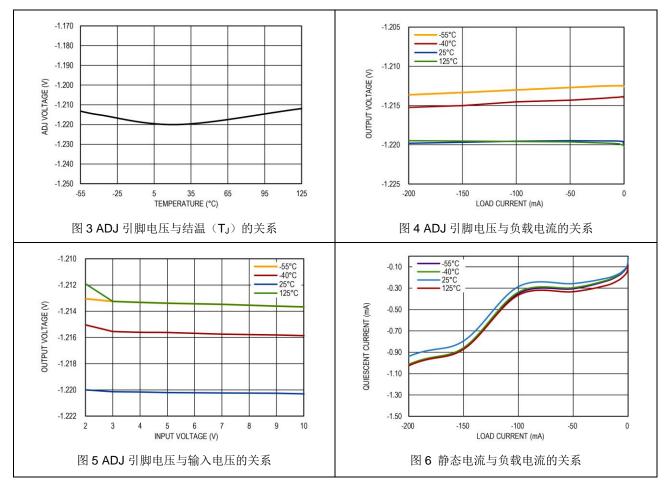
参数列表

除非另有说明 V_{IN} =(V_{OUT} – 0.5V)或-2.5V(取较小者),EN = V_{IN} , I_{OUT} = -10mA, C_{IN} = $2.2\mu F$, C_{OUT} = $2.2\mu F$, T_J = - $55^{\circ}C$ ~ + $125^{\circ}C$ (对于最小/最大值规格), T_A = $25^{\circ}C$ (对于典型规格)。

参数		条件	最小	典型	最大	单位
输入电压范围(V _{IN})		-	-2.5	_	-10	V
工作电源电流(I _{GND})		I _{OUT} = 0µA	-	-33	-53	μA
关断电流(I _{GND-SD})		I _{OUT} = -10mA	-	-170	-220	μΑ
		I _{OUT} = -200mA	-	-930	-1200	μΑ
		EN = GND	-	-3	-	μΑ
固定输出电压精度(Vouт)		EN = GND V _{IN} = -2.7V ~ -10V	-	-	-8	μΑ
		I _{OUT} = -10mA, T _A = 25°C	-1	-	+1	%
可调输出电压	精度(V _{ADJ})	-1mA < I _{OUT} < -200mA V _{IN} = (V _{OUT} - 0.5V) ~ -10V	-2	-	+2	%
		I _{OUT} = -10mA	-1.174	-1.186	-1.198	V
线性调整率($\Delta V_{OUT}/\Delta V_{IN})$	-1mA < I _{OUT} < -200mA V _{IN} = (V _{OUT} - 0.5V) ~ -10V	-1.162	_	-1.210	V
		$V_{IN} = (V_{OUT} - 0.5V) \sim -10V$	-0.01	-	+0.01	%/V
负载调整率[1]	$(\Delta V_{OUT}\!/\!\Delta I_{OUT})$	I _{OUT} = -1mA 至-200mA	-	0.001	0.006	%/mA
ADJ 输入偏置	电流(ADJ _I -віаs)	$-1mA < I_{OUT} < -200mA$ $V_{IN} = (V_{OUT} - 0.5V) \sim -10V$	-	10	-	nA
压差[2]	(V _{DO})	I _{OUT} = -10mA	-	-7	-20	mV
		$I_{OUT} = -50 \text{mA}$	-	-22	-50	mV
启动时间 ^[3]	$(t_{\text{START-UP}})$	I _{OUT} = -200mA	-	-88	-170	mV
		V _{OUT} = -1.186V	-	250	_	μs
限流阈值 [[]	4] (1,)	V _{OUT} = -5V	-	800	_	μs
PK7/ILPA IE.	(ILIMIT /	_	-240	-360	_	mA
J.L. V. Nor	热关断阈值 (TS _{SD})	T』上升	-	165	_	°C
热关断	热关断迟滞 (TS _{SD-HYS})	_	-	15	_	°C
	正上升 (V _{EN-POS-RISE})	Vоит = 关断至导通(正)	-	_	1.2	V
EN 阈值	负上升 (V _{EN-NEG-RISE})	V _{оит} = 关断至导通(负)	-2.0	_	-	V
LIN MIL	正下降 (V _{EN-POS-FALL})	Vour = 导通至关断(正)	0.3	_	-	V
	负下降 (V _{EN-NEG-FALL})	Vour = 导通至关断(负)		_	-0.55	V
输入电压闭锁	启动阈值 (V _{START})	-	-20	-1.85	-	V
1147、七旦内以	关断阈值 (V _{SHUTDOWN})	-	-	-1.66	-2.1	V
输出噪声(OUT _{NOISE})		10Hz 至 100kHz, V _{OUT} = -1.5V, V _{OUT} = -2.5V,V _{OUT} = -5V	-	10	-	μVRMS
		10Hz 至 100kHz, V _{OUT} = -5V,可调模式, C _{NR} = 开路,R _{NR} = 开路, R _{FB1} = 147kΩ,R _{FB2} = 13kΩ	-	50	-	μVRMS

参数	条件	最小	典型	最大	单位
输出噪声(OUT _{NOISE})	10 Hz 至 100 kHz, $V_{OUT} = -5V$,可调模式, $C_{NR} = 100$ nF, $R_{NR} = 13$ k Ω , $R_{FB1} = 147$ k Ω , $R_{FB2} = 13$ k Ω	1	19	1	μVRMS
电源抑制比(PSRR)	100kHz, $V_{IN} = -6V$, $V_{OUT} = -5V$	-	57	-	dB
	10kHz, $V_{IN} = -6V$, $V_{OUT} = -5V$	-	72	-	dB

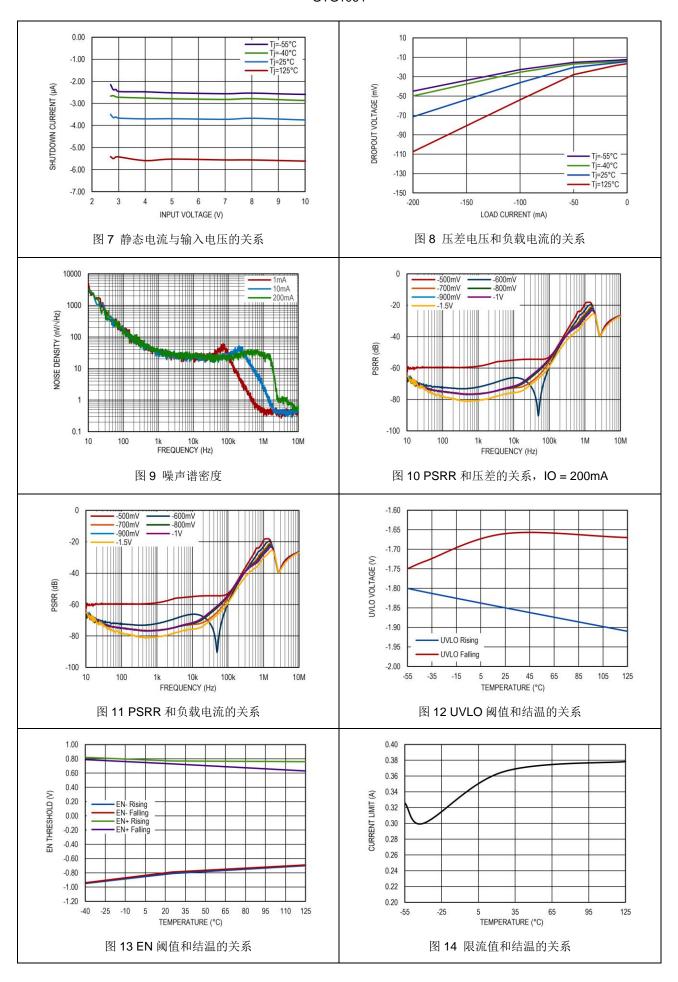
注 $^{[1]}$: 基于使用-1mA 和-200mA 负载的端点计算,1mA 以下负载的典型负载调整性能。

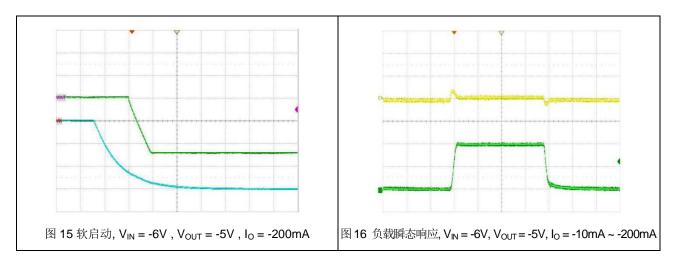

推荐规格:输入和输出电容

参数		符号	最小	典型	最大	单位	条件
<i>t</i> 会)和 <i>t</i> 会山	最小电容[1]	C _{MIN}	1.5	2.2	_	μF	T _A = -55°C ~ +125°C
输入和输出 电容	电容等效串联 电阻(ESR)	R _{ESR}	0.001	I	0.2	Ω	T _A = -55°C ~ +125°C

注^[1]:在所有工作条件下,输入和输出电容必须大于1.5μF。选择器件时必须考虑应用的所有工作条件,确保达到最小电容要求。配合任何LDO使用时,建议使用X7R型和X5R型电容,不建议使用Y5V和Z5U电容。

典型性能参数


除非另有说明, V_{IN} = -6V, V_{OUT} = -5V, I_{OUT} = -10mA, C_{IN} = 2.2 μ F, C_{OUT} = 2.2 μ F, T_A = 25 $^{\circ}$ C。



注^[2]: 压差定义为将输入电压设置为标称输出电压时的输入至输出电压差。压差仅适用于-3V以上的输出电压。

注^[3]:启动时间定义为 EN 的上升沿到 V_{OUT} 达到其标称值 90%的时间。

注^[4]: 限流阈值定义为输出电压降至额定典型值90%时的电流。例如,-5V输出电压的电流限值定义为引起输出电压降至-5V的90%或-4.5V的电流。

工作原理

GYG1964 是一款低静态电流 LDO 线性稳压器,采用-2.5V 至-10V 电源供电,最大输出电流为-200mA。 满负载时静态电流典型值低至-0.9mA,因此 GYG1964 非常适合电池供电的便携式设备使用。室温时,最 大关断电流为-3.0μA。

GYG1964 基于 2.2μF 输出陶瓷电容优化,可实现出色的瞬态性能。

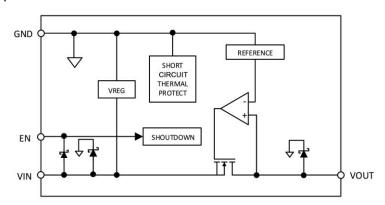


图 17 固定输出电压内部框图

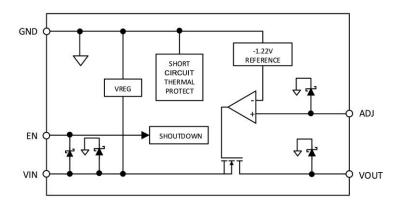


图 18 可选输出电压型号内部框图

GYG1964 内置一个基准电压源、一个误差放大器、一个反馈分压器和一个 NMOS 调整管。输出电流 经由 NMOS 调整管提供,其受误差放大器控制。误差放大器比较基准电压与输出端的反馈电压,并放大 该差值。如果反馈电压低于基准电压,NMOS 器件的栅极将被拉低向 GND,以便通过更多电流,提高输出电压。如果反馈电压高于基准电压,NMOS 器件的栅极将被拉向-V_{IN},以便通过较少电流,降低输出电压。

可调工作模式

GYG1964 提供固定输出电压选项以及可调模式型号,可通过外部分压器,将输出电压调节至-1.186V ~ -10V。根据下式可设置输出电压: -V_{OUT} = -1.186V (1 + R_{EB1}÷ R_{EB2})

其中,R_{FB1}和 R_{FB2}是输出分压器中的电阻,如图 19 所示。

 R_{FB2} 必须低于 120kΩ,以便将 ADJ 引脚泄漏电流引起的输出电压误差降至最低。ADJ 引脚泄漏电流 造成的误差电压等于 R_{FB1} 和 R_{FB2} 的并联组合乘以 ADJ 引脚泄漏电流。

例如,若 R_{FB1} = R_{FB2} = 120k Ω ,输出电压等于-2.36 V,ADJ 引脚典型泄漏电流(10nA)引起的误差等于 60k Ω 乘以 10nA,即 6mV。本例中的输出电压误差为 0.245%。

添加一个小数值电容(100pF 左右)使其与 R_{FB1} 并联连接,可增加 GYG1964 的稳定性。大数值电容 也可降低噪声并改进 PSRR。

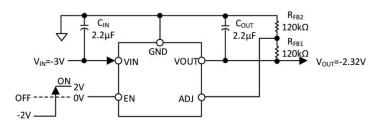
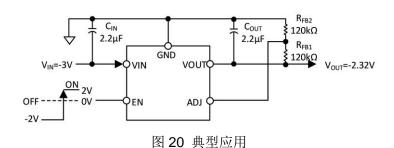



图 19 设置可调输出电压

典型应用

应用信息

输出电容

GYG1964 设计采用节省空间的小型陶瓷电容工作,但只要考虑 ESR 值,便可以采用大多数常用电容。输出电容的 ESR 会影响 LDO 控制回路的稳定性。为了确保 GYG1964 稳定工作,推荐使用至少 2.2μF、ESR 为 0.2Ω 或更小的电容。输出电容还会影响负载电流变化的瞬态响应。采用较大的输出电容值可以改善 GYG1964 对大负载电流变化的瞬态响应。

输入旁路电容

在 V_{IN} 至 GND 之间连接一个 2.2 μ F 电容可以降低电路对 PCB 布局布线的敏感性,特别是遇到长输入 走线或高信号源阻抗时。如果要求输出电容大于 2.2 μ F,可选用更高的输入电容。

输入和输出电容特性

只要符合最小电容和最大 ESR 要求, GYG1964 可以采用任何质量优良的陶瓷电容。陶瓷电容可采用各种各样的电介质制造,温度和所施加的电压不同,其特性也不相同。电容必须具有足以在必要的温度范

围和直流偏置条件下确保最小电容的电介质。推荐使用额定电压为 25V 或 50V 的 X5R 或 X7R 电介质。 Y5V 和 Z5U 电介质的温度和直流偏置特性不佳,建议不要使用。

电容的电压稳定性受电容尺寸和电压额定值影响极大。一般来说,封装较大或电压额定值较高的电容 具有更好的稳定性。X5R 电介质的温度变化率在-40°C 至+85°C 温度范围内为±15%,与封装或电压额定 值没有函数关系。

考虑电容随温度、元件容差和电压的变化,可以利用如下公式确定最差情况下的电容。

 $C_{EFF} = C_{BIAS} \times (1 - TEMPCO) \times (1 - TOL)$

其中: C_{BIAS} 为工作电压下的有效电容; TEMPCO 是最差情况下的电容温度系数; TOL 是最差情况下的元件容差。

为了保证 GYG1964 的性能,必须针对每一种应用来评估直流偏置、温度和容差对电容性能的影响。

使能引脚工作原理

在正常工作条件下,GYG1964 利用 EN 引脚使能和禁用 V_{OUT} 引脚。当 EN 相对 GND \geq ±2V 时, V_{OUT} 开启;当 EN 为 0V 时, V_{OUT} 关闭。若要实现自动启动,可将 EN 接至 V_{IN} 。

GYG1964 具有双极性使能引脚(EN),当|VEN| ≥ 2V 时可开启 LDO。使能电压相对地而言可以 是正的,也可以是负的。

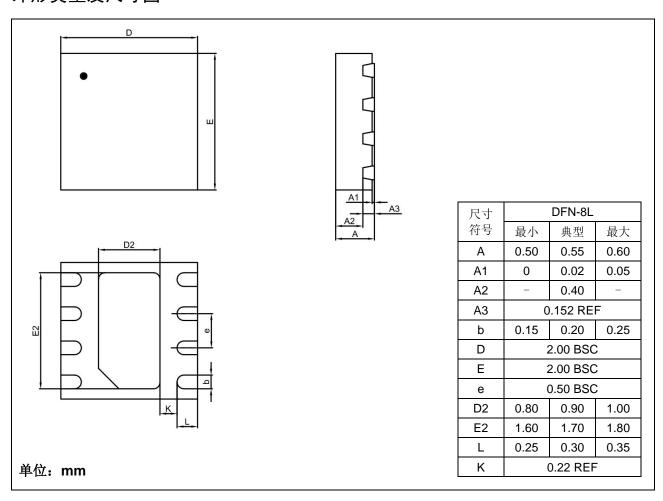
软启动

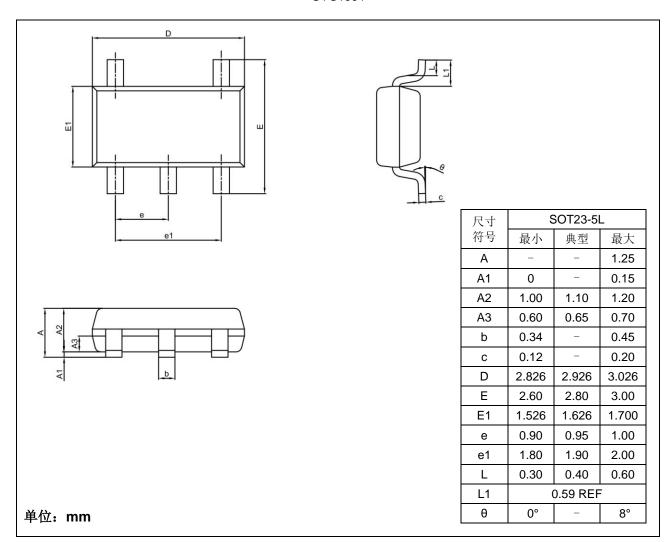
GYG1964 利用内置软启动功能,在输出使能时限制浪涌电流。启动时间和固定输出电压有关。当输出电压为-1.186V 时,从通过 EN 有效阈值到输出达到其最终值 90%的启动时间约为 250μs。当输出电压为-5V 时,启动时间约为 800μs。

限流和热过载保护

GYG1964 内置限流和热过载保护电路,可防止功耗过大导致受损。当输出负载达到-360mA(典型值)时,限流电路就会起作用。当输出负载超过-360mA时,输出电压会被降低,以保持恒定的电流限制。

热过载保护电路将结温限制在 165℃ (典型值)以下。在极端条件下(即高环境温度和高功耗),当结温开始升至 165℃ 以上时,输出就会关闭,从而将输出电流降至 0mA。当结温降至 150℃ 以下时,输出又会开启,输出电流恢复为工作值。


考虑 V_{OUT} 至地发生负载短路的情况。首先 GYG1964 的限流功能起作用,因此,仅有-360mA 电流传导至短路电路。如果结的自发热量足够大,使其温度升至 165℃ 以上,热关断功能就会激活,输出关闭,输出电流降至 0mA。当结温冷却下来,降至 150℃ 以下时,输出开启,将-360mA 电流传导至短路路径中,再次导致结温升至 165℃ 以上。结温在 150℃ 至 165℃ 范围内的热振荡导致电流在-360mA 和 0mA 之间振荡;只要输出存在短路,振荡就会持续下去。


限流和热过载保护可保护器件免受偶然过载条件影响。为保证器件稳定工作,必须从外部限制器件的功耗,使结温不会超过 125°C。

订购信息

系列名称	产品型号	工作温度	封装形式	质量等级
	GYG1964-ADJDF8I+	-40°C ~ +125°C	DFN-8L	工业扩展级
	GYG1964-ADJDF8M	-55°C ~ +125°C	DFN-8L	普军级
GYG1964-ADJ	GYG1964-ADJDF8N1	-55°C ~ +125°C	DFN-8L	GJB7400 N1 级
G 1 G 1 9 6 4 - ADJ	GYG1964-ADJSOB5I+	-40°C ~ +125°C	SOT23-5L	工业扩展级
	GYG1964-ADJSOB5M	-55°C ~ +125°C	SOT23-5L	普军级
	GYG1964-ADJSOB5N1	-55°C ~ +125°C	SOT23-5L	GJB7400 N1 级
	GYG1964-2.5SOB5I+	-40°C ~ +125°C	SOT23-5L	工业扩展级
GYG1964-2.5	GYG1964-2.5SOB5M	-55°C ~ +125°C	SOT23-5L	普军级
	GYG1964-2.5SOB5N1	-55°C ~ +125°C	SOT23-5L	GJB7400 N1 级
	GYG1964-5.0SOB5I+	-40°C ~ +125°C	SOT23-5L	工业扩展级
GYG1964-5.0	GYG1964-5.0SOB5M	-55°C ~ +125°C	SOT23-5L	普军级
	GYG1964-5.0SOB5N1	-55°C ~ +125°C	SOT23-5L	GJB7400 N1 级

外形类型及尺寸图

