

GYC1118 内置高精度基准源和温度传感器 低功耗、兼容 SPI 接口、2kSPS、16 位 ADC

概述

GYC1118 是一款高精度、低功耗、兼容 SPI 接口、16 位 ΔΣ 型 ADC, 其内部集成了一个低漂 移电压基准、一个振荡器、一个可编程 PGA。这 些特性使得 GYC1118 适用于大多数的传感器测量应用。

GYC1118 能够以 2kSPS 的速率执行转换操作。PGA 提供的可编程输入电压范围为±256mV至±6.144V,输入多路选择器 (MUX)可以提供 4个单端输入和 2 个差分输入。

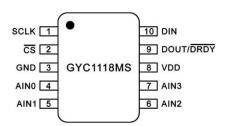
GYC1118 可工作于单次转换模式或者连续转换模式。单次转换模式在一个转换完成之后将自动进入断电模式,从而极大地降低了空闲状态下的电流消耗。

应用领域

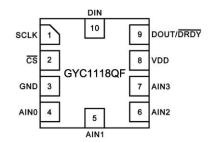
- 手持式仪表
- 电池电压电流监测
- 温度测量

TC(热电偶)

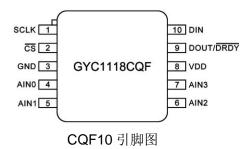
NTC、PTC(热敏电阻)


• 工厂自动化及过程控制

特性说明


- 宽电源范围: 2.5V~5V
- 低电流消耗: 270µA (连续转换模式)
- 可编程数据速率: 6.25SPS ~ 2kSPS
- 内部低漂移电压基准
- 内部振荡器
- 内部可编程增益放大器 (PGA)
- SPI 接口
- 内部温度传感器
- 4个单端或2个差分输入

技术说明


引脚图

MSOP10 引脚图

X2QFN10 引脚图

引脚定义

GYC1118 引出端功能

引脚序号	引脚名称	引脚类型	说 明
1	SCLK	DI	串行时钟输入
2	CS	DI	片选,低有效
3	GND	GND	接地
4	AIN0	Al	模拟输入 0
5	AIN1	AI	模拟输入 1
6	AIN2	AI	模拟输入 2
7	AIN3	Al	模拟输入3
8	V_{DD}	PWR	电源
9	DOUT/DRDY	DO	串行数据输出或数据就绪指示位,低有效
10	DIN	DI	串行数据输入

内部功能框图

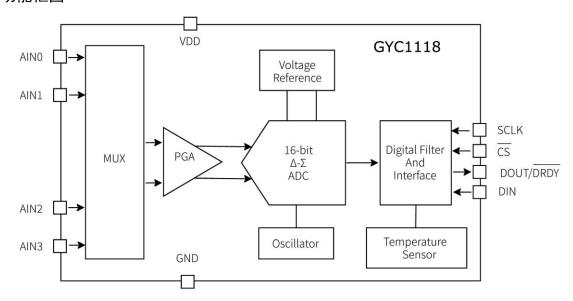


图 1 内部功能框图

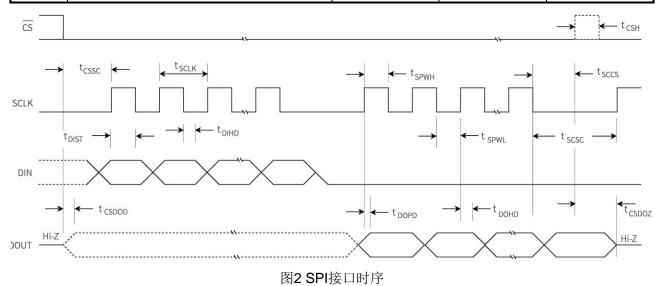
绝对最大额定值

电源电压 ······· -0.3V ~ +7.0V
模拟输入 ····· GND - 0.3V ~ V _{DD} + 0.3V
数字输入 ····· GND - 0.3V ~ +5.5V
输入电流 ^[1]
工作温度 ······
贮存温度 ······
结温 ·····-40°C ~ +150°C
ESD(HBM)
ESD(CDM)

参数列表

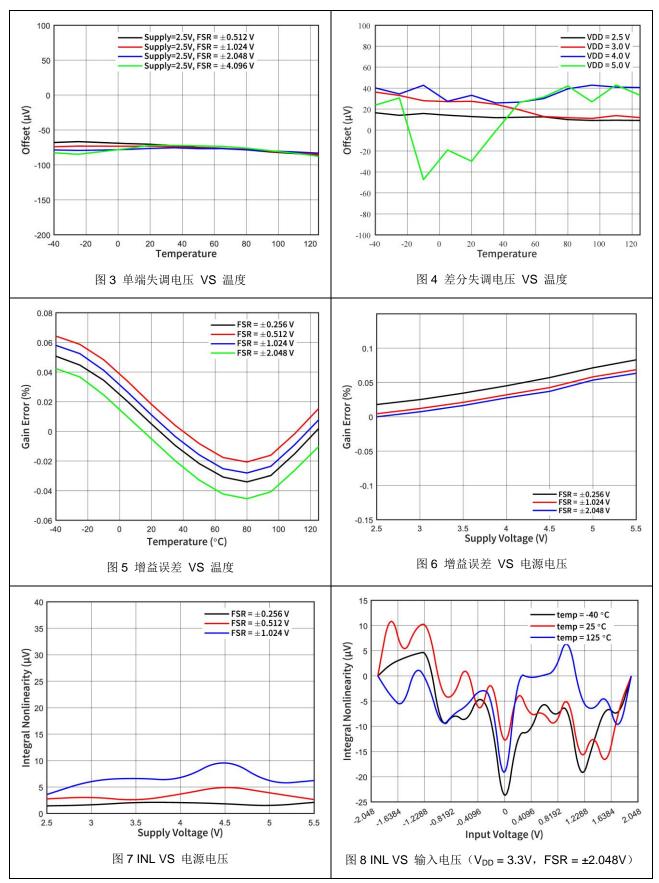
默认测试条件: V_{DD} = 3.3V,Data Rate = 6.25SPS,FSR = ±2.048V, T_A = -55°C ~ +125°C。

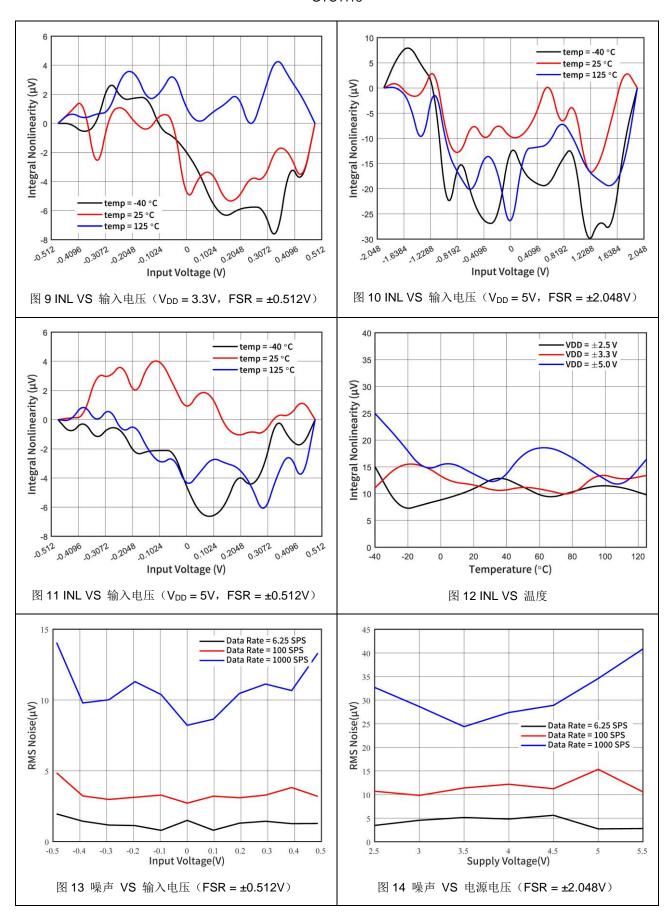
	条件	最小	典型	最大	单位
模拟输入					
共模输入阻抗	全量程范围	-	13	_	ΜΩ
	FSR = ±6.144V	-	7	-	ΜΩ
	FSR = ±4.096V	-	5.8	-	ΜΩ
26 () 46 2 HH I).	FSR = ±2.048V	-	4.3	-	ΜΩ
差分输入阻抗	FSR = ±1.024V	-	2.7	-	ΜΩ
	FSR = ±0.512V	_	1.6	_	ΜΩ
	FSR = ±0.256V	_	0.9	-	ΜΩ
** > 12 = 1 + 12	单端	_	63	_	nA
输入偏置电流	差分	_	102	-	nA
系统性能	-	- 1	1	•	1
分辨率 (无失码)	-	16	_	_	Bit
数据速率	-	6.25, 12.5,	25, 50, 100,	400, 1k, 2k	SPS
数据速率误差	所有数据速率	-10%	_	10%	_
输出噪声	-	2	。 多见噪声性能部	分	-
INL	-	_	_	1	LSB
增益误差	差分输入,FSR = ±2.048V T _A = 25°C	-	0.01%	0.05%	_
增益温度漂移	-	-	7	20	ppm/°C
增益长时漂移	FSR = ±2.048V, T _A = 25°C 1000hrs	-	0.084%	-	-
增益电源抑制	FSR = ±2.048V, T _A = 25°C	-	0.034	_	%/V
增益匹配	任意两个增益之间的匹配[1]	-	0.02%	3%	_
增益通道匹配	任意两个差分输入之间的匹配 FSR = ±2.048V	_	0.0005%	0.006%	-
松)作油油去	FSR = ±2.048V,差分输入	-3	±0.4	+3	LSB
输入失调误差	FSR = ±2.048V,单端输入	-	-1.5	_	LSB
输入失调电源抑制	直流电源变化	-	0.5	1.15	LSB/V
输入失调通道匹配	任意两个差分输入之间的匹配	-	0.008	3	LSB
共模抑制比	直流电压变化	-	100	-	dB
数据输入/输出					
V _{IH}	-	0.7V _{DD}	_	V _{DD} +0.3	V
V _{IL}	-	GND	-	0.3V _{DD}	V
V _{OL}	-	GND	0.15	0.3	V
输入漏电流	GND < V _{DIG} < V _{DD}	-10	-	+10	μA
电源	•	,			
n./	断电模式, T _A = 25°C	_	0.5	2	μA
IV_{DD}	断电模式	-	-	5	μA
IV _{DD}	转换模式, T _A = 25℃	_	270	300	μA

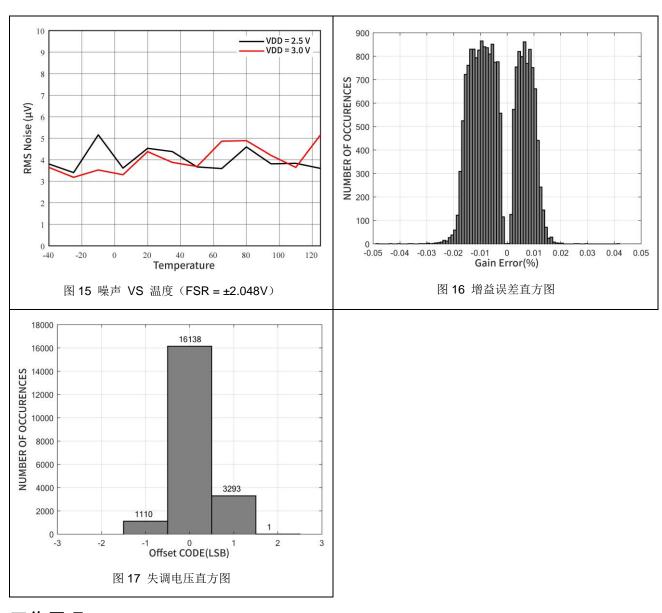

参数	条件	最小	典型	最大	单位
IV_{DD}	转换模式	_	_	500	μA
温度传感器					
温度范围	-	-55	-	+125	°C
温度分辨率	-	_	0.174	-	°C/V
精确度	T _A = 0°C ~ 70°C	_	±1	-	°C
作佣度	-	-	±4	ı	°C

^{[1]:} 在差分输入通道上的测试结果。

时序规格


默认测试条件: $V_{DD}=2.5V\sim5.5V$, $T_A=25^{\circ}C$ 。


参数	描述	最小值	最大值	单位
t _{CSSC}	CS 下降沿到第一个 SCLK 上升沿的延迟时间	100	-	ns
tsccs	最后的 SCLK 下降沿到 CS 上升沿的延迟时间	100	-	ns
t _{CSH}	脉冲持续时间,CS高	200	-	ns
t _{SCLK}	SCLK 周期	250	-	ns
t _{SPWH}	SCLK 高电平持续时间	100	-	ns
	CCLV低中亚特殊时间	100	-	ns
t _{SPWL}	SCLK 低电平持续时间	-	28	ms
t _{DITS}	DIN 的建立时间	50	-	ns
t _{DIHD}	DIN 的保持时间	50	-	ns
t _{DOHD}	DOUT 的保持时间	0	-	ns
tcsdod	CS 下降沿到 DOUT 驱动的传播延迟时间	-	100	ns
t _{DOPD}	SCLK 上升沿到有效的新 DOUT 的传播延迟时间	-	50	ns
t _{CSDOZ}	CS 上升沿到 DOUT 高阻态的传播延迟时间	-	100	ns



典型特征

默认测试条件: $T_A = 25$ °C, $V_{DD} = 3.3V$, $FSR = \pm 2.048V$,DR = 6.25SPS。

工作原理

GYC1118是一款低功耗16位ΔΣ型ADC,它集成了电压基准、振荡器、可编程增益放大器和片内温度传感器。

多路选择器

GYC1118内置多路选择器(Multiplexer),通过寄存器MUX[2:0]的不同配置,选择4个通道(4个单端输入和2个差分输入配置)的其中之一作为输入进行转换。当单端信号被测量时,ADC的负端输入将通过MUX的开关连接到GND。具体配置信息参考寄存器表中MUX[2:0]的描述。

FSR 和 LSB

FSR由Config寄存器PGA[2:0]来配置,各量程对应LSB如下:

FSR	LSB
±6.144V	187.5µV
±4.096V	125µV
±2.048V	62.5µV

FSR	LSB
±1.024V	31.25μV
±0.512V	15.625μV
±0.256V	7.8125µV

模拟输入电压不得超过绝对最大额定值中给出的模拟输入电压限制,因此当FSR > V_{DD}+0.3V时,输入将被钳位在V_{DD}+0.3V,超过该电压的部分无法测量到。

基准电压

GYC1118集成了一个低温漂电压基准,只提供内部电压参考,不能对外输出。

振荡器

GYC1118内置了500kHz的振荡器,芯片的输出数据速率与内部时钟频率成正比。

数据速率

GYC1118提供了可编程的数据速率,可通过Config寄存器DR[2:0]来配置数据速率。

内部温度传感器

GYC1118内置了一个高精度温度传感器,将Config寄存器中的TS_MODE置1以使能该传感器。温度传感器输出数据长度为14位,测温模式下,直接取ADC输出数据的前14位即可。

转换函数如下所示: 温度°C = 0.166 x Temp_Data - 263.29

噪声性能

ΔΣ型ADC基于过采样原理,输入信号以高频采样,随后进行滤波和提取。采样频率和输出数据速率的比值被称为过采样比(OSR)。通过提高过采样比,可以优化ADC的噪声性能,这在测量小信号时非常有用。

 $V_{DD} = 3.3V$ 时均方根和峰峰值噪声 $\mu V_{RMS} (\mu V_{P-P})$

数据速率	FSR(满量程范围)							
(SPS)	±6.144V	±4.096V	±2.048V	±1.024V	±0.512V	±0.256V		
6.25	187.5 (187.5)	125 (125)	62.5 (62.5)	31.25 (31.25)	15.62 (15.62)	7.81 (7.81)		
12.5	187.5 (187.5)	125 (125)	62.5 (62.5)	31.25 (31.25)	15.62 (15.62)	7.81 (7.81)		
25	187.5 (187.5)	125 (125)	62.5 (62.5)	31.25 (31.25)	15.62 (15.62)	7.81 (7.81)		
50	187.5 (187.5)	125 (125)	62.5 (62.5)	31.25 (31.25)	15.62 (15.62)	7.81 (7.81)		
100	187.5 (190.15)	125 (125)	62.5 (62.5)	31.25 (33.92)	15.62 (17.56)	7.81 (7.81)		
400	187.5 (326.12)	125 (213.98)	62.5 (114.51)	31.25 (61.99)	15.62 (31.38)	7.81 (18.53)		
1000	187.5 (472.02)	125 (303.99)	62.5 (157.68)	31.25 (81.15)	15.62 (46.76)	7.81 (30.04)		
2000	187.5 (931.15)	125 (597.77)	62.5 (306.25)	31.25 (164.59)	31.25 (97.59)	15.62 (60.44)		

V_{DD} = 3.3V时的有效分辨率和无噪声分辨率

数据速率	FSR(满量程范围)					
(SPS)	±6.144V	±4.096V	±2.048V	±1.024V	±0.512V	±0.256V
6.25	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)
12.5	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)

数据速率	FSR(满量程范围)							
(SPS)	±6.144V	±4.096V	±2.048V	±1.024V	±0.512V	±0.256V		
25	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)		
50	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)	16 (16)		
100	16 (15.98)	16 (16)	16 (16)	16 (15.88)	16 (15.83)	16 (15.56)		
400	16 (15.20)	16 (15.22)	16 (15.13)	16 (15.01)	16 (14.99)	16 (14.75)		
1000	16 (14.67)	16 (14.72)	16 (14.66)	16 (14.62)	16 (14.42)	16 (14.06)		
2000	16 (13.69)	16 (13.74)	16 (13.71)	16 (13.60)	15.94 (13.36)	15.63 (13.05)		

功能与模式

复位

GYC1118在上电时复位,并将Config寄存器中的所有位设置为默认值。在完成复位后进入断电模式,芯片接口和数字模块处于活动状态但不执行数据转换。若SCLK持续超过30ms都为低电平,SPI接口会自行复位。该复位只会对SPI接口功能进行复位,不会影响到内部寄存器配置和ADC工作状态。

转换模式

GYC1118具有两种转换模式:单次转换模式和连续转换模式,可通过Config寄存器MODE位来选择运行模式。

单次转换模式

当Config寄存器的MODE位为1,芯片进入断电模式,断电模式下芯片仍然能响应命令。Config寄存器的OS位写入1之前,芯片将保持在断电模式。当OS位被置1时,芯片大约在30µs内启动,将OS位自动清0,并开始一次单次转换。当AD数据转换完成后,芯片再次进入断电模式。

转换正在进行时,向OS位写入1无效。要切换到连续转换模式,需要在Config寄存器的MODE位中写入0。

连续转换模式

当Config寄存器MODE位为0,芯片进入连续转换模式。当一次AD转换完成后,芯片将转换结果放入Conversion寄存器然后立即开始下一个转换。想要切换到单次转换模式,需要向Config寄存器中的MODE位写入1。

数字接口

GYC1118采用SPI协议进行通信,控制器可以采用32位或者16位的SPI命令读取GYC1118的ADC转换结果以及配置ADC的内部寄存器。

SPI 时序

32位SPI诵信时序

32位SPI传输模式下,一个通信周期包括4个字节的数据:前两个字节输出ADC转换结果,后两个字节用于回读Config寄存器中的数据。需要注意的是,SPI通信都是高有效位优先(MSB)的形式。

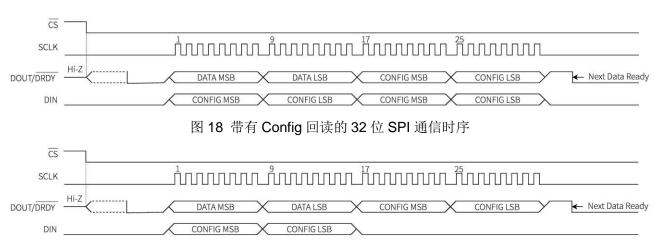


图 19 后两个字节 DIN 拉低下, 32 位 SPI 通信时序

16位SPI通信时序

如果Config寄存器的数据不需要读回,GYC1118的SPI接口可以以16位的长度工作。如下图所示,在该模式下,CS信号必须在16个SCLK周期后拉高以复位SPI通信接口。

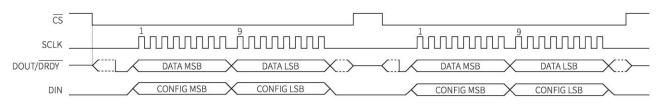


图 20 16 位 SPI 通信时序

数据格式

GYC1118提供了16位二进制数据,下表总结了不同输入信号的理想输出码值。

输入	输出
\geq +FS $(2^{15}-1) / 2^{15}$	7FFFh
+FS / 2 ¹⁵	0001h
0	0000h
-FS / 2 ¹⁵	FFFFh
≤-FS	8000h

寄存器

CONVERSION

位	名称	访问类型	复位	描述
15:0	D[15:0]	R	0000h	16 位转换数据

CONFIG

Config寄存器是一个16位的寄存器,通过Config寄存器可以控制GYC1118的工作模式、满量程模拟输入范围、输出数据速率、输入通道配置以及进入温度传感器模式。

位	名称	访问类型	复位	描述	
15	SS	R/W	0h	单次转换模式控制 当写入时: 0:无效 1:启动单次转换(断电模式下) 当读取时: 返回值为 0 (默认值)	
14:12	MUX[2:0]	R/W	0h	输入通道配置 000: AINP = AIN0, AINN = AIN1 (默认值) 001: AINP = AIN0, AINN = AIN3 010: AINP = AIN1, AINN = AIN3 011: AINP = AIN2, AINN = AIN3 100: AINP = AIN0, AINN = GND 101: AINP = AIN1, AINN = GND 110: AINP = AIN2, AINN = GND 111: AINP = AIN3, AINN = GND	
11:9	PGA[2:0]	R/W	2h	满量程输入范围配置 000: FSR = ±6.144V 001: FSR = ±4.096V 010: FSR = ±2.048V (默认值) 011: FSR = ±1.024V 100: FSR = ±0.512V 101: FSR = ±0.256V 110: FSR = ±0.256V 111: FSR = ±0.256V	
8	MODE	R/W	1h	芯片工作模式 0:连续转换模式 1:断电模式和单次转换模式(默认值)	
7:5	DR[2:0]	R/W	4h	数据输出速率配置 000: 6.25SPS 001: 12.5SPS 010: 25SPS 011: 50SPS 100: 100SPS (默认值) 101: 400SPS 110: 1000SPS 111: 2000SPS	
4	TS_MODE	R/W	0h	温度传感器模式 0: ADC模式 (默认值) 1: 温度传感器模式	
3	PULL_UP_EN	R/W	1h	该位控制DOUT/DRDY管脚是否通过一个内部400kΩ的电阻上拉至V _{DD} 。 0: 上拉电阻被禁用 1: 上拉电阻被启用(默认值)	
2	NOP[1:0]	R/W	1h	无操作指令 该位控制数据是否被写进Config寄存器。NOP[1:0]位必须 为01,数据才能被写进Config寄存器。对于NOP命令的其 它值,均不会执行写Config寄存器操作。 00、10、11:不更新Config寄存器的内容 01:更新 Config 寄存器的内容(默认值)	
0	Reserved	R	1h	芯片保留,只读寄存器	

应用

串行接口连接

GYC1118的典型连接如图21所示,芯片通过SPI接口与主机通信。GYC1118采用标准的SPI接口通信时序,能够兼容绝大多数控制器。为了与GYC1118通信,SPI控制器应该配置为CPOL = 0,CPHA = 1模式。在该模式下,SCLK空闲为低电平,MCU的DOUT数据则在SCLK的上升沿触发,MCU和GYC1118在SCLK的下降沿锁存和读取数据。可以在SPI各个引线上串联50Ω阻值的电阻,以提供一定的短路保护。

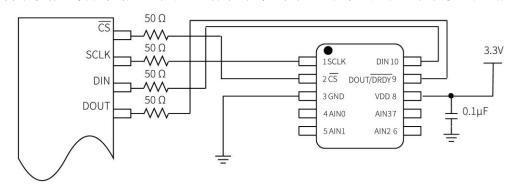
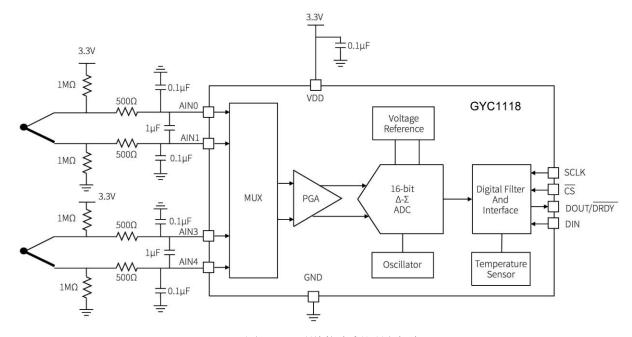
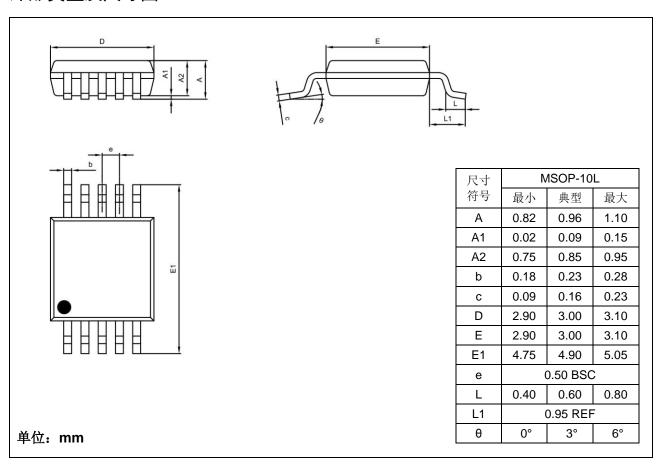


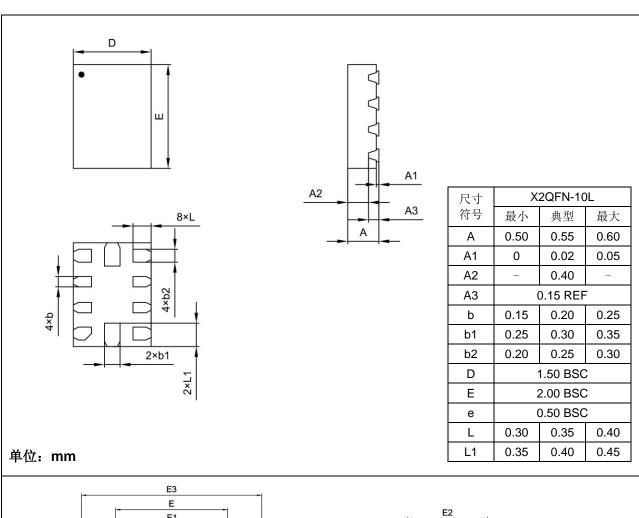
图21 典型连接

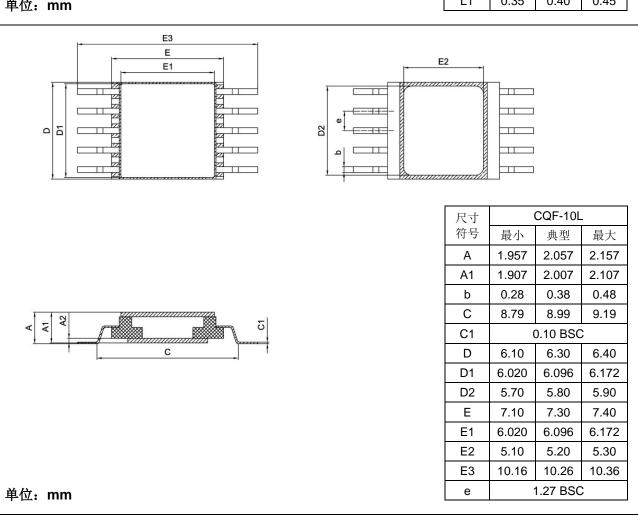
典型应用

图22给出了使用GYC1118的双通道独立热电偶测量电路的基本连接,能够采用GYC1118内部的高精度温度传感器进行热电偶的冷端补偿。

将GYC1118 Config寄存器中的TS_MODE位置1可启用温度传感器模式。热电偶测温电路中,冷端补偿温度传感器的测量精度会影响整体测温精度。因此,为了设计精准的热电偶测量电路,必须注意GYC1118的放置以及PCB的布局布线。


图22 双通道热电偶测量电路


订购信息

系列名称	产品型号	工作温度	封装形式	质量等级
	GYC1118MSI+	-40°C ~ +125°C	MSOP-10L	工业扩展级
	GYC1118MSM	-55°C ~ +125°C	MSOP-10L	普军级
	GYC1118MSN1	-55°C ~ +125°C	MSOP-10L	GJB7400 N1 级
GYC1118	GYC1118QF10I+	-40°C ~ +125°C	X2QFN-10L	工业扩展级
GICITIO	GYC1118QF10M	-55°C ~ +125°C	X2QFN-10L	普军级
	GYC1118QF10N1	-55°C ~ +125°C	X2QFN-10L	GJB7400 N1 级
	GYC1118CQF10M	-55°C ~ +125°C	CQF-10L	普军级
	GYC1118CQF10B	-55°C ~ +125°C	CQF-10L	GJB597 B 级

外形类型及尺寸图

