

GYC620 精密仪表放大器

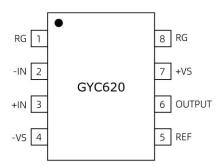
概述

GYC620是一款增益可编程、高性能仪表放大器,在较宽频率范围内可提供业界较高的共模抑制比。传统仪表放大器产品的共模抑制比在几百赫兹时下降,,而GYC620在增益为1时,频率在10kHz以内均能保持80dB以上的高共模抑制比。优异的共模抑制比性能使得GYC620可以抑制宽带干扰和谐波,大大简化了滤波器要求。

低失调电压、低失调漂移、低增益漂移、高增益精度和高共模抑制比特性,使该芯片成为要求最佳直流性能应用(如桥式信号调理)的绝佳选择。可编程增益为用户提供了设计灵活性。通过单个电阻即可将增益设置为1至1000。

GYC620采用单电源和双电源供电,适合 ±10V输入电压的应用。

应用领域


- 仪器仪表
- 传感器调理电路
- 数据采集系统
- 电磁流量计
- 医疗仪器

特性说明

- 宽电源电压范围: ±2.3V ~ ±18V
- 输入失调电压:最大值为 20µV
- 输入失调漂移:最大值为 0.28µV/°C
- 输入偏置电流:最大值为 0.15nA
- 低输入电压噪声:最大值为 6.5nV/√Hz
- 等效输入噪声: 0.2µVpp (0.1Hz ~ 10Hz)
- CMRR: 92dB (DC) / 80dB (10kHz) (增益为1)
- 小信号-3dB 带宽: 1000kHz (增益为 1)
- 压摆率: 2.4V/us
- 通过单个外部电阻设置增益(增益范围 1~1000)

技术说明

引脚图

SOP8/CSOP8 引脚图

引脚定义

表 1 管脚功能描述

引脚编号	引脚名称	引脚类型	说明
1	RG	-	增益设置。在RG管脚之间放置电阻以设置增益 G = 1 + (49.4kΩ/RG)
2	-IN	Al	反相输入端
3	+IN	AI	同相输入端
4	-V _S	PWR	负电源
5	REF	AI	参考电压,使用低内阻电压源驱动该管脚
6	OUTPUT	AO	电压输出
7	+V _S	PWR	正电源
8	RG	_	增益设置。在RG管脚之间放置电阻以设置增益 G = 1 + (49.4kΩ/RG)

内部功能框图

绝对最大额定值

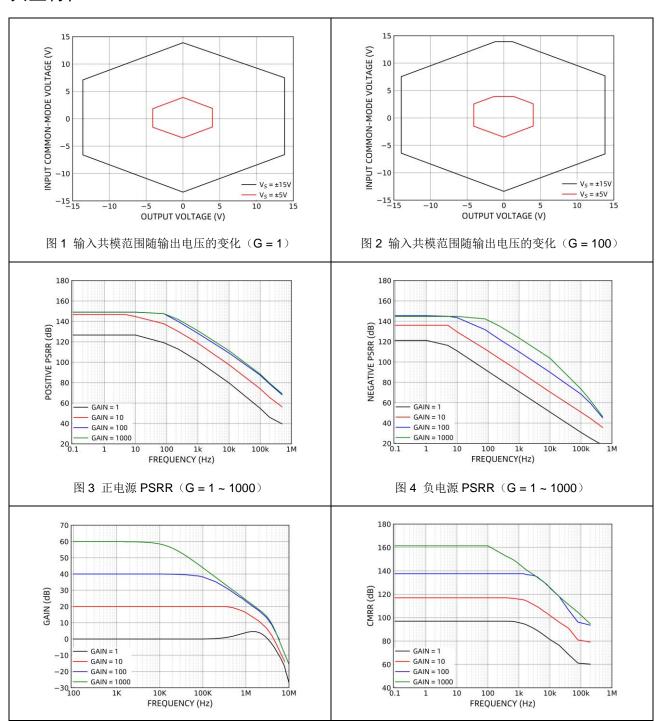
电源电压	±18V
共模输入电压	$-V_{S} \sim +V_{S}$
差模输入电压	-V _S ~ +V _S
工作温度	-55°C ~ +125°C
贮存温度	-60°C ~ +150°C
结温	
ESD (HBM)	4KV
ESD (CDM)	1KV

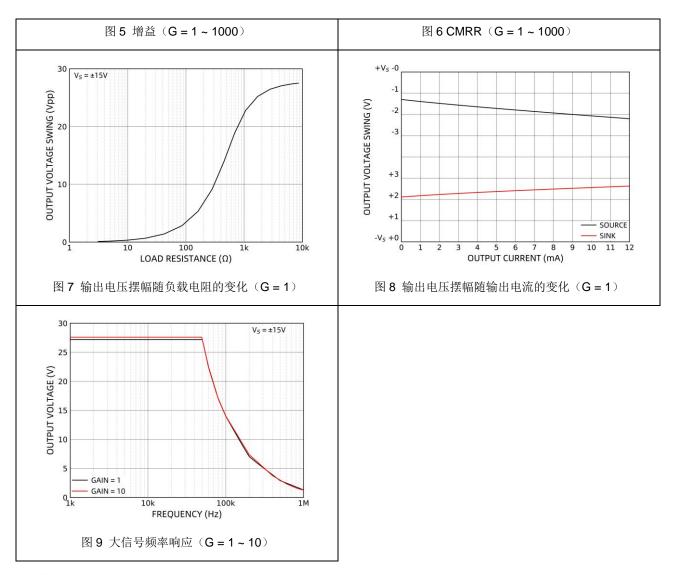
参数列表

默认测试条件: $V_S=\pm 15V$ 、 $V_{REF}=0V$ 、G=1、 $R_L=2k\Omega$ 、 $T_A=25^{\circ}C$ 。

参数	条件	最小	典型	最大	单位
共模抑制比					
	直流到 60Hz,G = 1,V _{CM} = -10V ~ +10V,输入端带 1kΩ 源内阻失配	92	-	-	dB
	直流到 60Hz,G = 10,V _{CM} = -10V ~ +10V,输入端带 1kΩ 源内阻失配	110	_	_	dB
	直流到 60Hz,G = 100,V _{CM} = -10V ~ +10V,输入端带 1kΩ 源内阻失配	130	-	-	dB
CMRR	直流到 60Hz,G = 1000,V _{CM} = -10V ~ +10V,输入端带 1kΩ 源内阻失配	140	-	-	dB
	10kHz, $G = 1$, $V_{CM} = -10V \sim +10V$	80	_		dB
	10kHz, $G = 10$, $V_{CM} = -10V \sim +10V$	100	_	_	dB
	10kHz, $G = 100$, $V_{CM} = -10V \sim +10V$	120	-	-	dB
	10kHz, G = 1000, V _{CM} = -10V ~ +10V	120	-	-	dB
噪声特性					
输入电压噪声 (eNI)	$1kHz, V_{IN+}/V_{IN-}/V_{REF} = 0$	_	6.3	-	nV/√Hz
输出电压噪声 (eNO)	1kHz	-	72	-	nV/√Hz
<i>^// →/ / / / / / / / / /</i>	G = 1,0.1Hz ~ 10Hz	-	2.9	3.97	μVpp
等效输入噪声 (RTI) ^[1]	G = 10, 0.1Hz ~ 10Hz	-	0.5	-	μVpp
	G = 100 ~ 1000, 0.1Hz ~ 10Hz	-	0.16	0.2	μVpp
电流噪声	1kHz	-	_	164	fA/√Hz
· Libility (0.1Hz ~ 10Hz	-	_	6.7	рАрр
失调电压			_	T	
输入失调电压	$V_S = \pm 5V \sim \pm 15V$	-	-	19	μV
(Vosi)	$V_S=\pm 5V \sim \pm 15V$, $T_A = -40^{\circ}C \sim +85^{\circ}C$	-	_	22	μV
输入失调电压温漂	-	-	-	0.28	μV/°C
输出失调电压	$V_S = \pm 5V \sim \pm 15V$	-	-	141	μV
(V _{oso})	$V_S = \pm 5V \sim \pm 15V$, $T_A = -40^{\circ}C \sim +85^{\circ}C$	-	-	0.35	μV
输入失调电压温漂	-	-	-	2.52	μV/°C
	$G = 1$, $V_S = \pm 2.3 V \sim \pm 18 V$	123	128	_	dB
PSRR ^[2]	$G = 10$, $V_S = \pm 2.3V \sim \pm 18V$	137	140	_	dB
TORK	$G = 100, V_S = \pm 2.3V \sim \pm 18V$	138	140	_	dB
	$G = 1000, V_S = \pm 2.3V \sim \pm 18V$	139	142	_	dB
输入电流					
输入偏置电流	-	-	0.1	0.127	nA
1111/1/	T _A = -40°C ~ +85°C	-	_	0.5	nA
输入偏置电流温漂	-	-	_	1.37	pA/°C
给) 生油山沟	-	-	0.1	0.4	nA
输入失调电流	T _A = -40°C ~ +85°C	-	-	0.6	nA
输入失调电流温漂	-	_	1	-	pA/°C
基准输入					
基准输入电阻	-	-	20	-	kΩ

参数	条件	最小	典型	最大	单位
基准输入电流	$V_{IN+}/V_{IN-}/V_{REF} = 0$	-	30	-	μΑ
参考电压范围	$V_{IN+}/V_{REF} = 0$	-Vs	-	+V _S	V
基准到输出增益	-	-	1±0.0001	-	V/V
电源					
电源工作范围	-	±2.3	_	±18	V
势大山运	-	-	1	1.1	mA
静态电流	T _A = -40°C ~ +85°C	-	1.2	1.3	mA
动态性能			•		
	G = 1	-	1000	-	kHz
小信号-3dB 带宽	G = 10	-	700	-	kHz
小信亏-30B 审免	G = 100	-	140	-	kHz
	G = 1000	-	15	_	kHz
口神女	G = 1	-	2.4	-	V/µs
压摆率	G = 5 ~ 100	-	2.5	-	V/µs
0.040(10V 阶跃,G = 1 ~ 100	-	10	_	μs
0.01%建立时间	10V 阶跃,G = 1000	-	80	_	μs
0.0040/ 큐누타디	10V 阶跃,G = 1 ~ 100	-	13	_	μs
0.001%建立时间	10V 阶跃,G = 1000	-	110	_	μs
增益 ^[3]					
增益范围	-	1	-	1000	V/V
	G = 1, V _{OUT} = ±10V	-	0.02	-	%
操头沿去	G = 10, V _{OUT} = ±10V	-	-	0.15	%
增益误差	G = 100, V _{OUT} = ±10V	-	-	0.15	%
	G = 1000, V _{OUT} = ±10V	-	_	0.15	%
	$G = 1 \sim 10, \ \ V_{OUT} = -10V \sim +10V,$ $R_L = 10k\Omega$	-	3	-	ppm
增益非线性	$G = 100, V_{OUT} = -10V \sim +10V,$ $R_L = 10k\Omega$	-	5	-	ppm
垣 面非线压	$G = 1000, V_{OUT} = -10V \sim +10V,$ $R_L = 10k\Omega$	-	10	ı	ppm
	$G = 1 \sim 100, V_{OUT} = -10V \sim +10V,$ $R_L = 2k\Omega$	-	10	-	ppm
增益温漂	G = 1	-	-0.1	_	ppm/°C
7日	G > 1	-	-1.2	-	ppm/°C
输入					
输入阻抗	差分	-	100 2	-	GΩ pF
1111/\PILIJU	共模	-	100 2	_	GΩ pF
	V _S = ±2.3V ~ ±5V	-V _S +1.5	-	+V _S -1.1	V
給)由口茲国	$V_S = \pm 2.3 V \sim \pm 5 V$, $T_A = -40 ^{\circ} C \sim +85 ^{\circ} C$	-V _S +2	-	+V _S -1.2	V
输入电压范围	V _S = ±5V ~ ±18V	-V _S +1.6	-	+V _S -1.1	V
	V _S = ±5V ~ ±18V, T _A =-40°C ~ +85°C	-V _S +2	_	+V _S -1.2	V


参数	条件	最小	典型	最大	单位
输出摆幅	$V_S = \pm 2.3 V \sim \pm 5 V$, $R_L = 10 k\Omega$	-V _S +1	-	+V _S -1.1	V
	$V_S = \pm 2.3 V \sim \pm 5 V$, $R_L = 10 k \Omega$, $T_A = -40 ^{\circ} C \sim +85 ^{\circ} C$	-V _S +1.4	-	+V _S -1.3	V
输出摆幅	$V_S = \pm 5V \sim \pm 18V$, $R_L = 10k\Omega$	-V _S +1.1	_	+V _S -1.3	V
	$V_S = \pm 5V \sim \pm 18V, \ R_L = 10k\Omega, \ T_A = -40^{\circ}C \sim +85^{\circ}C$	-V _S +1.6	-	+V _S -1.5	V


注[1]: RTI 噪声 = $\sqrt{\text{eNI}^2 + (\text{eNO} \div \text{G})^2}$

注[2]: PSRR 定义为等效输入失调电压对电源变化的抑制。等效输入失调电压 = Vosi + Voso÷G

注[3]: G = 1 + 49.4kΩ÷RG

典型特征

工作原理

GYC620是一款基于经典三运放拓扑结构的仪表放大器。输入晶体管Q1和Q2以固定电流偏置,因此任何差分输入信号都会迫使A1和A2的输出电压发生相应变化。输入端的信号通过RG、R1和R2产生电流,使A1和A2的输出端产生对应的电压。从拓扑结构看,Q1、A1、R1和Q2、A2、R2可以视为精密电流反馈放大器。放大后的差分和共模信号施加于差分放大器,抑制了共模电压,但同时放大了差分电压。差分放大器采用创新技术,可实现低输出失调电压和低输出失调电压漂移。激光修调电阻保证了GYC620的增益误差小于20ppm,CMRR大于90dB(G=1)。用户可以使用单个标准电阻轻松、精确地设置增益。

GYC620采用高精度基极电流补偿方案,提供极高的输入阻抗、低I_B、低I_B漂移、低I_{OS}、低输入偏置电流噪声和6.3nV/√Hz的极低电压噪声。

GYC620的传递函数为:

$G = 1 + 49.4k\Omega \div RG$

由于输入放大器采用电流反馈架构,GYC620的增益带宽积随增益而增加,因此系统在较高增益时, 带宽损失小于电压反馈架构。

GYC620可实现在低输入电平下也能保持精度,其性能可满足要求严苛的应用。

独特的管脚排列使GYC620能够满足10kHz时80dB(G=1)和1kHz时120dB(G=1000)的CMRR

规格。管脚配置所示的对称管脚排列减少了过去对CMRR性能产生不利影响的寄生效应。此外,该排列也简化了电路板布局,例如增益设置电阻管脚靠近输入端,REF管脚靠近输出端。在RG管脚两端放置一个电阻设置GYC620的增益,可参照表2。

利用以下公式计算增益:

 $RG = 49.4k\Omega \div (G-1)$

预期增益/增益设置 RG1%标准表值(Ω) 49.9k 1.99 12.4k 4.984 9.998 5.49k 2.61k 19.93 50.4 1k 499 100 249 199.4 495 100

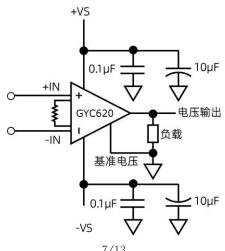
表2 使用1%精度电阻计算的增益

不使用增益电阻时,GYC620默认为G=1。增益精度由RG的绝对容差决定。外部增益电阻的温漂会增加仪表放大器的增益漂移。不使用增益电阻时,增益误差和增益漂移保持最小值。

991

49.9

参考电压


GYC620的REF管脚用以设置输出的参考电平,这对于当输出信号需要偏置到精确的中间电源电平时很有益处。例如,可以将一个电压源连接到REF管脚,经过电平转换的输出便可直接接入ADC。容许的参考电压范围是增益、输入和电源电压的函数。REF管脚电压不应超过+V_S+0.5V或-V_S-0.5V以上。

为获得最佳性能,驱动REF管脚的源阻抗应保持较低水平,因为寄生电阻会影响CMRR和增益精度。

电源调制和滤波

仪表放大器应使用稳定的直流电压供电。电源管脚上的噪声会对性能产生不利影响。应使用旁路电容 对放大器去耦。

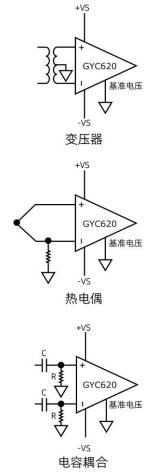
每个电源管脚附近应放置一个0.1μF电容。如图10所示,可以在离GYC620更远的地方使用一个10μF 钽电容。在大多数情况下,该钽电容可以和其他精密集成电路共享。

图10 电源耦合、参考电压和到接地输出

布局

严谨的PCB板布局可以最大限度地提高系统性能,使GYC620在整个频率范围内保持高CMRR。从增益设置电阻到RG管脚的走线应尽可能短,以将寄生电感降至最低。为确保最精确的输出,REF管脚的走线应连接到GYC620的本地接地,或者连接到以GYC620本地接地为参考的电压。

共模抑制


GYC620在整个频率范围内具有高CMRR的一个优势是,它对线路噪声及相关谐波等干扰的抗扰度更高。通常,典型仪表放大器在200Hz时CMRR下降,而共模滤波器经常用于弥补这一缺点。GYC620能够在更大的频率范围内抑制CMRR,从而减少滤波需求。输入源阻抗和电容应精确匹配。此外,源电阻和源电容应尽可能靠近输入端。

接地

GYC620的输出电压绝对值取决于REF管脚的电压,因此需要非常注意REF管脚上参考电压的接地。 在混合信号环境中,低电平模拟信号需要与高噪声数字环境隔离开来。许多ADC具有独立的模拟和数字接 地管脚。虽然将两个地线连接到一个单独的接地层很方便,但流经地线和PCB板的电流可能会导致数百毫 伏的误差。因此,应使用独立的模拟和数字接地回路,以尽量减少从敏感点流向系统接地的电流。

输入偏置电流返回路径

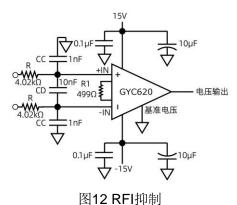

GYC620的输入偏置电流必须有一个到公共端的回流路径。当热电偶等源无法提供返回电流路径时,应创建一个返回电流路径,如图11所示:

图11 创建I_{BIAS}路径

射频干扰

当放大器用于存在强射频信号的应用时,通常会遇到射频信号整流而产生较小的直流失调电压的问题。可以在GYC620的输入端增加低通RC网络将高频信号滤除,如图12所示。

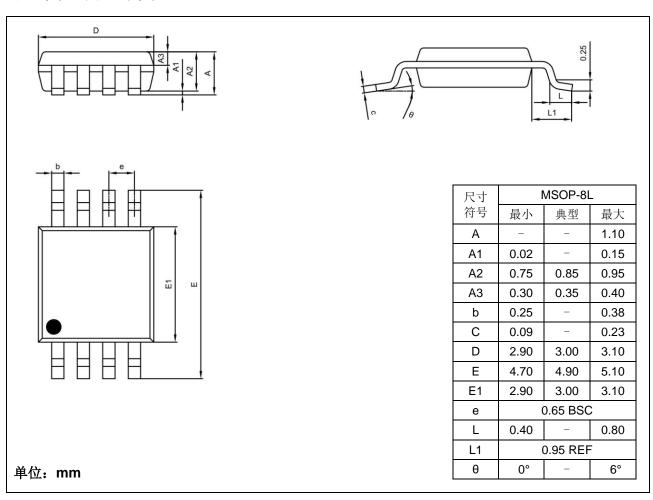
根据以下公式确定信号带宽:

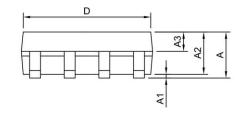
差模信号带宽 = 1÷【2 π R × (2Cd + Cc)】

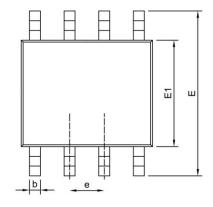
共模信号带宽 = $1 \div 2\pi RCc$

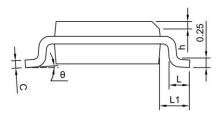
其中Cd≥10Cc。Cd影响差分信号,Cc影响共模信号。应选择R和Cc的值使RFI达到最小。同相输入端的R×Cc与反向输入端的R×Cc不匹配会降低CMRR。通过使用比Cc大一个数量级的Cd值,可减小不匹配带来的影响,从而提高性能。

输入保护


GYC620的所有管脚均提供1000V HBM保护。此外,两个输入端内部各串联一个400 Ω 限流电阻。当输入电压高于正电源电压+V_S或低于负电源-V_S时,大电流会直接通过ESD二极管流向电源轨。因此,在此种场景下需要在输入端串联一个外部电阻来限制电流。过压时的输入电流 $I = V_{IN} \div R_{EXT}$,需要选择合适的外部电阻值 R_{EXT} ,以保证输入电流在安全值6mA以内。

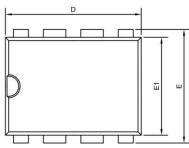

订购信息

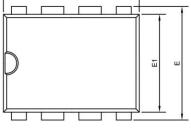

系列名称	产品型号	工作温度	封装形式	质量等级
	GYC620MSI	-40°C ~ +85°C	MSOP-8L	工业级
	GYC620MSM	-55°C ~ +125°C	MSOP-8L	普军级
	GYC620MSN1	-55°C ~ +125°C	MSOP-8L	GJB7400 N1 级
	GYC620SI	-40°C ~ +85°C	SOP-8L	工业级
	GYC620SM	-55°C ~ +125°C	SOP-8L	普军级
GYC620	GYC620SN1	-55°C ~ +125°C	SOP-8L	GJB7400 N1 级
	GYC620PI	-40°C ~ +85°C	PDIP-8L	工业级
	GYC620PM	-55°C ~ +125°C	PDIP-8L	普军级
	GYC620PN1	-55°C ~ +125°C	PDIP-8L	GJB7400 N1 级
	GYC620CUM	-55°C ~ +125°C	CSOP-8L	普军级
	GYC620CUB	-55°C ~ +125°C	CSOP-8L	GJB597 B 级

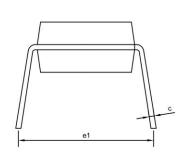

系列名称	产品型号	工作温度	封装形式	质量等级
	GYC620DM	-55°C ~ +125°C	CDIP-8L	普军级
0,40,00	GYC620DB	-55°C ~ +125°C	CDIP-8L	GJB597 B 级
GYC620	GYC620SB01M	-55°C ~ +125°C	SBDIP-8L	普军级
	GYC620SB01B	-55°C ~ +125°C	SBDIP-8L	GJB597 B 级

外形类型及尺寸图

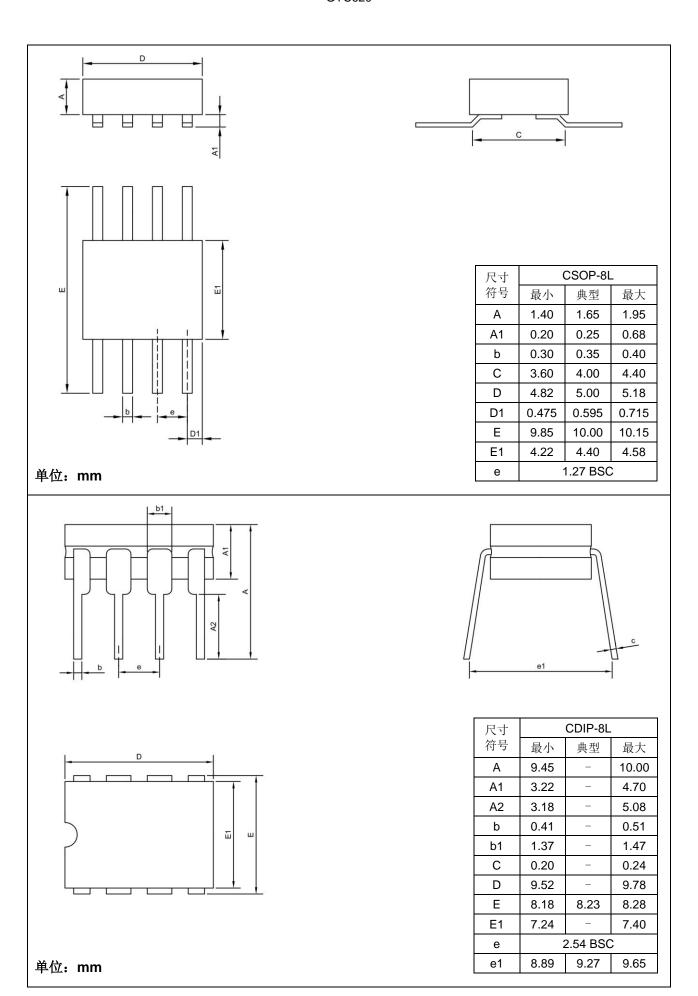


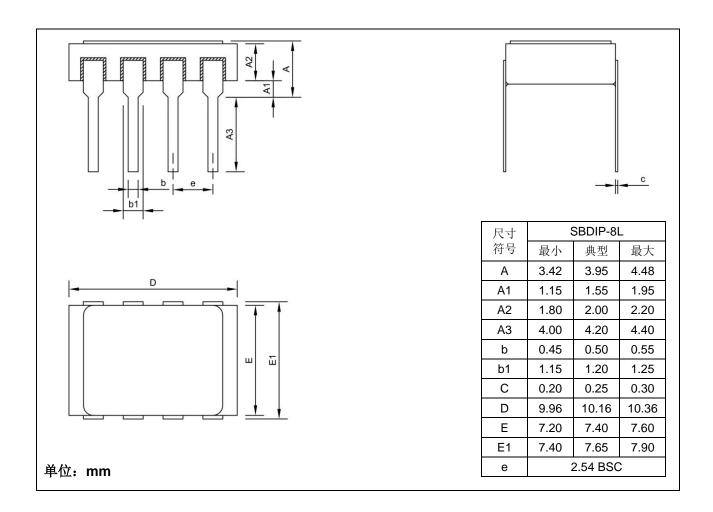





尺寸		SOP-8L		
符号	最小	典型	最大	
Α	1.45	1.60	1.75	
A1	0.10	0.18	0.25	
A2	1.35	1.45	1.55	
А3	0.60	0.65	0.70	
b	0.33	0.42	0.51	
С	0.17	0.21	0.25	
D	4.70	4.90	5.10	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.27 BSC			
h	0.25	-	0.50	
L	0.40	-	1.27	
L1	1.05 REF			
θ	0° - 8°			

单位: mm





尺寸	PDIP-8L			
符号	最小	典型	最大	
Α	3.60	3.80	4.00	
A1	0.51	ı	-	
A2	3.20	3.30	3.40	
A3	1.55	1.60	1.65	
b	0.44	ı	0.52	
b1	1.52REF			
С	0.20 -		0.29	
D	9.15	9.25	9.35	
Е		7.62REF		
E1	6.25	6.35	6.45	
е	2.54BSC			
e1	7.62	7.62 -		
L	3.00	_		

