

GYXL3490E

3. 0V~5. 5V、14Mbps 全双工 RS-422/RS-485 收发器

概述

GYXL3490E 是一款 3.0V 至 5.5V 供电、全 双工、低功耗,完全满足 TIA/EIA-485 标准要求 的 RS-485 收发器。

GYXL3490E包括一个驱动器和一个接收器,两者均可独立传输信号。具有 1/8 负载,允许 256 个收发器并接在同一通信总线上,可实现高达 14Mbps 的无差错数据传输。

GYXL3490E 工作电压范围为 3.0V 至 5.5V, 具备失效安全(Fail-Safe)、限流保护、过压保护,控制端口热插拔输入等功能。具有优秀的 ESD 释放能力,HBM 达到±15KV。

GYXL3490E 提供 MSOP8 和 SOP8 的封装形式,电气特性兼容 Maxim 公司的 MAX3490E 和 ADI 公司的 ADM3490E,可实现 pin 对 pin 替换。

特性说明

- 3.0V ~ 5.5V 电源供电,全双工
- 1/8单位负载允许最多256个器件连接到总线
- 驱动器短路输出保护
- 接收器开路失效保护
- 具有较强的抗噪能力
- 集成的瞬变电压抵制功能
- 在电噪声环境中的数据传输速率可达到 14Mbps
- A、B端口防护: HBM±15KV

技术说明

引脚图

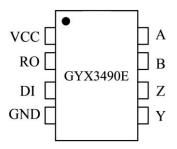


图 1 MSOP8/SOP8 引脚图

内部功能框图

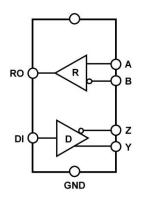


图 2 内部功能框图

真值表

发送器					
输入 输出					
DI	Y	Z			
1	Н	L			
0	L	Н			
X	Z	Z			
X	Z (美断)				

接收器					
输入	输出				
A-B	RO				
≥ -50mV	Н				
≤ -200mV	L				
开路/短路	Н				
X	Z				

X: 任意电平; Z: 高阻。

引脚定义

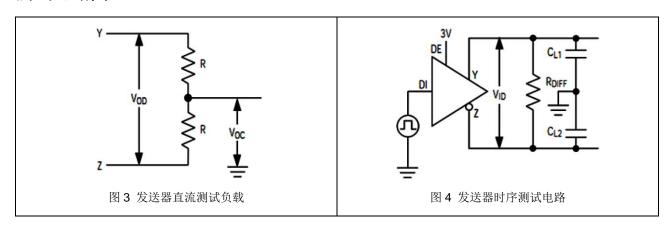
GYXL3490E 引出端功能

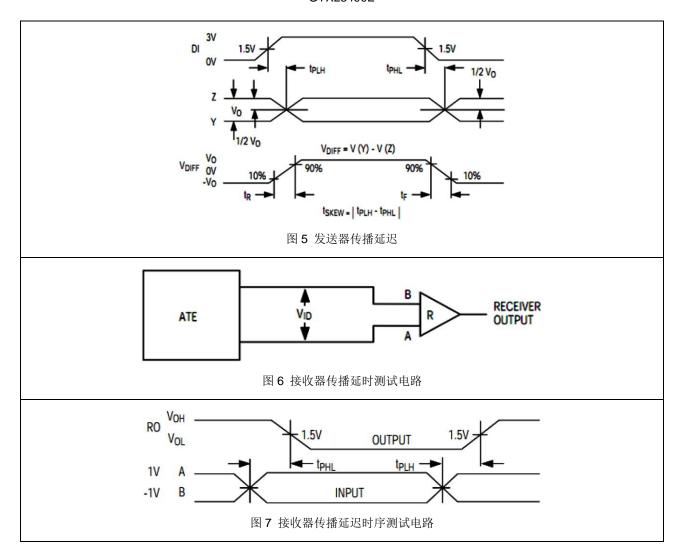
引脚序号	引脚名称	说明				
1	V _{CC}	接电源: 3V ≤ V _{CC} ≤ 5.5V				
2	RO	接收器输出端: 若(A - B)≥ -10mV, RO 输出为高电平; 如果(A - B)≤ -200mV, RO 为低电平				
3	DI	DI 发送器输入。DI 上的低电平使发送器同相端 Y 输出为低电平,发送器反相端 Z 输出为高电平; DI 上的高电平将使同相端 Y 输出为高电平,反相端 Z 输出为低				
4	GND	接地				
5	Υ	发送器同相输出端				
6	Z	发送器反相输出端				
7	В	接收器反相输入端				
8	А	接收器同相输入端				

绝对最大额定值

电源电压: V _{CC} ······· 7.0V
控制端口电压: DI
总线侧输入电压: A、B ·······
接收器输出电压: RO ···································
工作温度:
存储工作温度:

参数列表


直流电特性: 除非另有说明, $V_{CC}=3.3V\pm10\%$,环境温度: -55°C \leq Ta \leq +125°C,典型值在 $V_{CC}=+3.3V$, $T_A=25$ °C。


参数	符号	最小	典型	最大	单位	条	件
发送器直流电学特性							
	V_{OD1}	_	5	_	V	无负载	
差分输出电压		1.5	-	Vcc	V	R _L = 27Ω 图 3	
	V_{OD2}	2	_	Vcc	V	R _L = 50Ω 图 3	
输出电压幅值的变化[1]	ΔV_{OD}	-	-	0.2	V	R _L = 27Ω 图 3	
共模输出电压	V _{oc}	-	-	3	V	R _L = 27Ω 图 3	
共模输出电压幅值的变化[1]	ΔV _{oc}	_	_	0.2	V	R _L = 27Ω 图 3	
输入高电平电压	V_{IH}	2.0	-	-	V	DI	
输入低电平电压	V _{IL}	-	-	0.8	V	DI	
逻辑输入电流	I _{IN1}	-2	-	2	μΑ	DI	
输出短路时的电流,短路到高	I _{OSD1}	35	-	250	mA	短路到 0V ~ 12V	
输出短路时的电流, 短路到低	I _{OSD2}	-250	-	-35	mA	短路到-7V ~ 0V	
接收器直流电学特性							
输入电流 (A、B)	I _{IN2}	_	_	125	μA	V _{CC} = 0V 或 3.3V	V _{IN} = 12V
		_	_	-100	μA		V _{IN} = -7V

参数	符号	最小	典型	最大	单位	条件	
正向输入阀值电压	V _{IT+}	-	-	-50	mV	-7V ≤ V _{CM} ≤ +12V	
反向输入阀值电压	V _{IT-}	-200	-	-	mV	-7V ≤ V _{CM} ≤ +12V	
输入迟滞电压	V_{hys}	10	30	-	mV	-7V ≤ V _{CM} ≤ +12V	
高电平输出电压	V _{OH}	V _{CC} - 1.5	-	-	V	$I_{OUT} = -4mA$, $V_{ID} = 200mV$	
低电平输出电压	V _{OL}	-	-	0.4	V	$I_{OUT} = 4mA$, $V_{ID} = -200mV$	
三态输入漏电流	I _{OZR}	-	-	±1	μΑ	0.4V < V _O < 2.4V	
接收端输入电阻	R _{IN}	96	-	-	kΩ	-7V ≤ V _{CM} ≤ +12V	
接收器短路电流	I _{OSR}	±7	-	±95	mA	$0V \le V_O \le V_{CC}$	
供电电流							
供电电流	Icc	-	240	400	μΑ	DI = 0 或 V _{CC}	
ESD 保护							
A、B、Y、Z	-	-	±15	-	kV	人体模型(HBM)	
其它端口	-	-	±5	-	kV	人体模型(HBM)	
发送器开关特性							
发送器输入到输出传播延时 (低到高)	t _{DPLH}	_	15	35	ns	C _{L1} = C _{L2} = 100pF,R _{DIFF} = 54Ω 图 4、图 5	
发送器输入到输出传播延时 (高到低)	t _{DPHL}	-	15	35	ns		
t _{DPLH} — t _{DPHL}	t _{skew1}	_	7	10	ns		
上升沿时间/下降沿时间	t_{DR} , t_{DF}	-	10	25	ns		
接收器开关特性	•			•	•		
接收器输入到输出传播延时 (低到高)	t _{RPLH}	20	60	90	ns	V _{ID} ≥ 2.0V,上升与下降沿时间 V _{ID} ≤ 15ns 图 6、图 7	
接收器输入到输出传播延时 (高到低)	t _{RPHL}	20	60	90	ns		
t _{RPLH} – t _{RPHL}	t _{skew2}	-	7	10	ns		

注^[1]: ΔV_{OD} 和 ΔV_{OC} 分别是输入信号 DI 状态变化时引起的 V_{OD} 和 V_{OC} 幅值的变化。

测试电路图

工作原理

简述

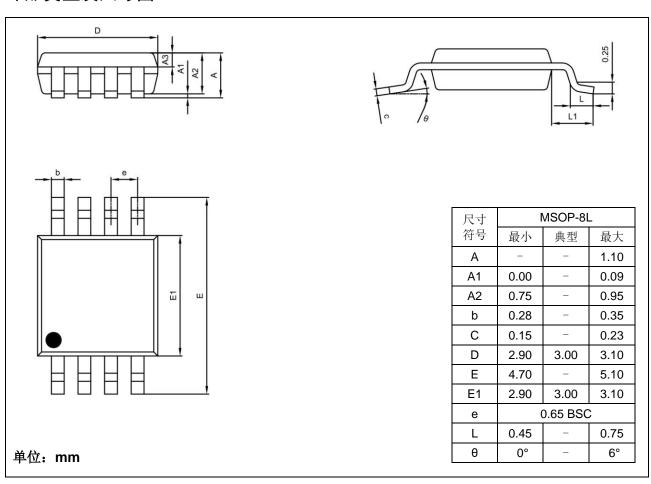
GYXL3490E是用于RS-485/RS-422通信的全双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护。GYXL3490E可实现高达14Mbps的无差错数据传输。

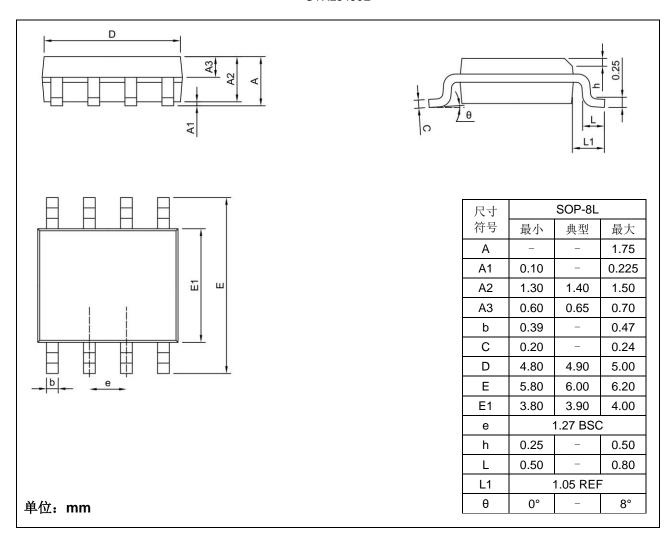
失效安全

接收器输入短路或开路,或挂接在终端匹配传输线上的所有驱动器均处于禁用状态时(idle),GYXL3490E可确保接收器输出逻辑高电平。这是通过将接收器输入门限分别设置为-10mV和-200mV实现的。若差分接收器输入电压(A − B)≥ -10mV,RO为逻辑高电平;若电压(A − B)≤ -200mV,RO为逻辑低电平。依据接收器门限,可实现具有50mV最小噪声容限的逻辑高电平。-10mV至-200mV门限电压是符合±200mV的EIA/TIA-485标准的。

总线上挂接256个收发器

标准RS-485接收器的输入阻抗为12kΩ(1个单位负载),标准驱动器可最多驱动32个单位负载。 GYXL3490E收发器的接收器具有1/8单位负载输入阻抗(96kΩ),允许最多256个收发器并行挂接在同一通信总线上。这些器件可任意组合,或者与其它RS-485收发器进行组合,只要总负载不超过32个单位负载,都可以挂接在同一总线上。


驱动器输出保护


通过过流、过压保护机制避免故障或总线冲突引起输出电流过大和功耗过高,在整个共模电压范围(参考典型工作特性)内提供快速短路保护。

订购信息

系列名称	产品型号	工作温度	封装形式	质量等级
GYXL3490E	GYXL3490EMI+	-40°C ~ +125°C	MSOP-8L	工业扩展级
	GYXL3490EMM	-55°C ~ +125°C	MSOP-8L	普军级
	GYXL3490EMM+	-55°C ~ +125°C	MSOP-8L	军筛级
	GYXL3490ESI+	-40°C ~ +125°C	SOP-8L	工业扩展级
	GYXL3490ESM	GYXL3490ESM -55°C ~ +125°C		普军级
	GYXL3490ESM+	-55°C ~ +125°C	SOP-8L	军筛级

外形类型及尺寸图

