

GY3182

ARINC 429 差分线路驱动器

1 概述

GY3182 是 5V 电源供电的高性能线路驱动器的 CMOS 器件,满足 ARINC 429 总线规范要求。

GY3182 提供了时钟和同步输入。这些信号与数据输入进行"与"运算,以提高系统性能,能够应用于多种场合。逻辑和同步输入均内置了最小 2000V 的 ESD 输入保护,并且兼容 TTL 和 CMOS。GY3182 的差分输出可通过使用两个外部电容器来编程,以实现高速或低速 ARINC 429 输出上升和下降时间规范。通过向 V_{REF} 输入施加外部电压,还可以调节输出电压摆幅。GY3182 的每个 ARINC 输出端串联了 37.5Ω电阻,并在每个输出端串联了保险丝。

GY3182 线路驱动器适用于需要将逻辑信号转换为 ARINC 429 电平的场合,例如与 GY3282 ARINC 429 总线接口电路配合使用。

GY3182 提供 28 管脚 CLCC 和 16 管脚 eSOP、SBDIP 封装形式,电路电气特性兼容 HOLT 公司的 HI-3182 和 INTERSIL 公司的 HS-3182。

2 特性说明

- 低功耗 CMOS
- TTL 和 CMOS 兼容输入
- 可编程的输出电压摆幅
- 可调 ARINC 上升和下降时间
- pin 对 pin 替代 Intersil 和 Holt 公司同类产品
- 以高达 100 Kbits 的数据速率运行
- 过电压保护
- 工业和军用温度范围

3 技术说明

3.1 引脚图

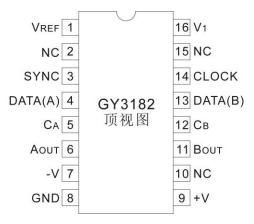


图 1 eSOP-16L/SBDIP-16L 顶视图

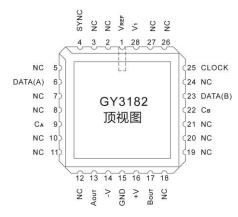


图 2 CLCC-28L 顶视图

3.2 引出端功能

GY3182 引出端功能

符号	功能	功能描述
V_{REF}	模拟信号	参考电压,用于确定输出电压摆幅。引脚源电流,允许使用齐纳参考
SYNC	输入	同步数据输入
DATA (A)	输入	数据输入端 A
C _A	输入	数据输入(A)压摆率调节电容
Аоит	输出	ARINC 输出端 A
-V	电源	-12V ~ -15V
GND	电源	0.0V
+V	电源	+12V ~ +15V
Воит	输出	ARINC 输出端 B
Св	输入	数据输入(B)压摆率调节电容
DATA (B)	输入	数据输入端 B
CLOCK	输入	同步数据输入
V ₁	电源	+5V±5%
NC	_	不连接

3.3 真值表

SYNC	CLOCK	DATA (A)	DATA (B)	AOUT	BOUT	注释
Х	L	Х	Х	0V	0V	NULL
L	Х	Х	Х	0V	0V	NULL
Н	Н	L	L	0V	0V	NULL
Н	Н	L	Н	-V _{REF}	+V _{REF}	LOW
Н	Н	Н	L	+V _{REF}	-V _{REF}	HIGH
Н	Н	Н	Н	0V	0V	NULL

3.4 功能描述

SYNC 和 CLOCK 利用两个与门建立数据输入同步,每个与门对应一个数据输入(见图 3)。每一个逻辑输入,均为 TTL/CMOS 兼容。

图 5 为一个典型的 ARINC 429 总线应用电路。控制 GY3182 需要三个电源,通常为+15V,-15V 和+5V。该芯片还可在±12V 电源下工作。+5V 电源也可提供基准电压,决定输出电压摆幅。差分输出电压摆幅将等于 2V_{REF}。如果需要+5V 以外的 V_{REF} 值,则引脚 V1 需要单独的+5V 电源。

当 DATA(A)输入为逻辑高电平,DATA(B)输入为逻辑低电平时,A_{OUT} 将切换到+V_{REF} 供电,并且 B_{OUT} 将切换到-V_{REF} 供电(ARINC 高状态)。当这两个数据输入信号均为逻辑低电平状态时,输出将均为 OV(ARINC NULL 状态)。

驱动器输出阻抗 R_{OUT} 的标称值为 75, 26 或 0Ω ,具体取决于所选择的选项。输出的上升和下降时间可以通过选择两个被连接到外部的 C_A 和 C_B 电容值输入引脚校准。高速工作 (100kbps) 的典型值为 $C_A=C_B=75pF$,低速工作 (12.5 ~ 14 kbps) 的典型值为 $C_A=C_B=500pF$ 。

CA和 CB引脚电压在+5V和地之间,允许利用外部单电源模拟开关切换电容值。

GY3182 的 ARINC 输出受内部保险丝保护,这些保险丝能够在短时间内(125μs)吸收 800mA~900mA 的电流。

V_{REF} 引脚通过一个内部上拉电阻连接到 V+,允许使用一个简单的外部齐纳二极管设置基准电压。

3.5 电源时序控制

电源的上电顺序应控制,以防止在电源开启和关闭期间出现大电流。推荐顺序为+V,其次为 V_1 ,始终要确保+V 是最大正电源。-V 供电并不重要,可以随时开启和关闭。

3.6 工作原理框图

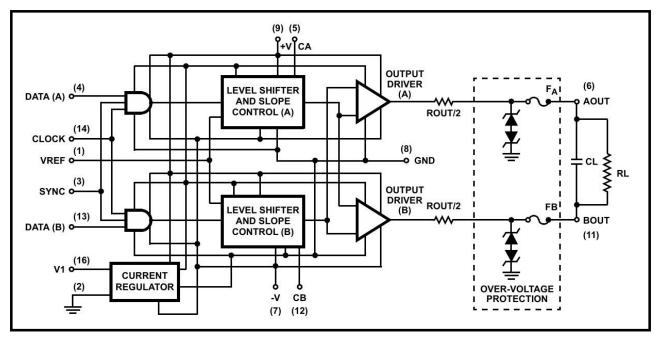


图 3 工作原理框图

3.7 绝对最大额定值

所有电压均以 GND 为参考, T_A 为工作温度范围(除非另有说明)

差分电压(V _{DIF} : +V 和-V 端子之间的电压)	+40V
电源电压(V ₁)	+7V
参考电压(V _{REF})	6V
输入电压范围(V _{IN}) ····································	GND -0.3V ~(V ₁ + 0.3V)
ESD 等级 ······	···················2 级(2000V ≤ ESD ≤ 3999V)
存储温度(T _S) ·······	-65°C ~ +150°C
结温(T _J)	+175°C
最大引脚温度(焊接 10s) ······	+275°C

注^[1]: 在+125°C 时,器件输出持续短路或 100KBPS 传输速率时,可能要采取散热措施。

注^[2]: 当任一输出端的电压对地电压超过±12V时,输出过压保护的熔丝可能会熔断。

注^[3]:在"绝对最大额定值"中列出的是器件正常工作的额定值,并未涉及器件在这些条件或超出这些条件下的功能操作。 器件不能长时间工作在绝对最大额定值条件下,否则会影响其可靠性和对器件造成永久损害。

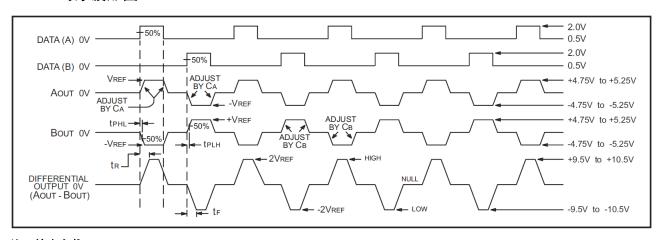
3.8 工作条件

工作电压:

+V	+10.8V ~ +16.5V
-V	
V ₁	5V±5%
V _{REF} (ARINC 429)	5V±5%
工作温度(T ₄) ·······	······ -55°C ~ +125°C

3.9 参数列表

直流电性能指标(除非另有说明,+V = +15V,-V = -15V,V₁ =V_{REF} = +5.0V,-55°C ≤ T_A ≤+125°C)


参数	符号	测试条件	最小值	典型值	最大值	单位
电源电流+V(工作)	I _{CCOP} (+V)	空载(0~100KBPS)	-	-	+16	mA
电源电流-V(工作)	I _{CCOP} (-V)	空载(0~100KBPS)	-16	-	_	mA
电源电流 V ₁ (工作)	I _{CCOP} (V ₁)	空载(0~100KBPS)	-	-	500	μA
参考引脚电流 V _{REF} (工作)	I _{CCOP} (V _{REF})	空载,V _{REF} = 5V (0 ~ 100KBPS)	-1.0	-0.4	-0.15	mA
电源电流+V (短路电流测试)	I _{SC} (+V)	短接到地 ^[1]	-	-	150	mA
电源电流-V (短路电流测试)	I _{SC} (-V)	短接到地[1]	-150	-	-	mA
输出短路电流 (输出高电平)	I _{OHSC}	短接到地,V _{MIN} = 0 ^[2]	-	-	-80	mA
输出短路电流 (输出低电平)	I _{OLSC}	短接到地,V _{MIN} = 0 ^[2]	+80	-	-	mA
高电平输入电流	I _{IH}	-	-	-	1.0	μA
低电平输入电流	I _{IL}	-	-1.0	_	_	μΑ
输入高电平电压	V _{IH}	-	2.0	-	_	V
输入低电平电压	V_{IL}	-	-	-	0.5	V
输出高电压 (输出对地)	V _{OH}	空载(0~100KBPS)	+V _{REF} -0.25	-	+V _{REF} +0.25	V
输出低电压 (输出对地)	V _{OL}	空载(0~100KBPS)	-V _{REF} −0.25	-	-V _{REF} +0.25	V
输出电压为空	V_{NULL}	空载(0~100KBPS)	-250	-	+250	mV
输入电容 ^[1]	C _{IN}	-	_	15	_	pF

注 $^{[1]}$: 不测试,但其特征在初始器件设计和后续主要工艺和/或设计变更时会影响该参数。注 $^{[2]}$: 器件的强制与检测互换性是可以接受的。

交流电性能指标(除非另有说明,+V = +15V,-V = -15V, $V_1 = V_{REF} = +5.0V$,-55°C $\leq T_A \leq +125$ °C)

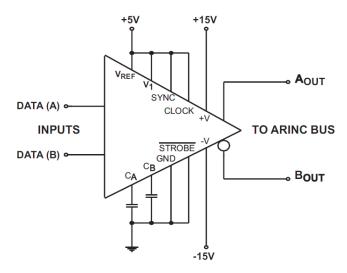
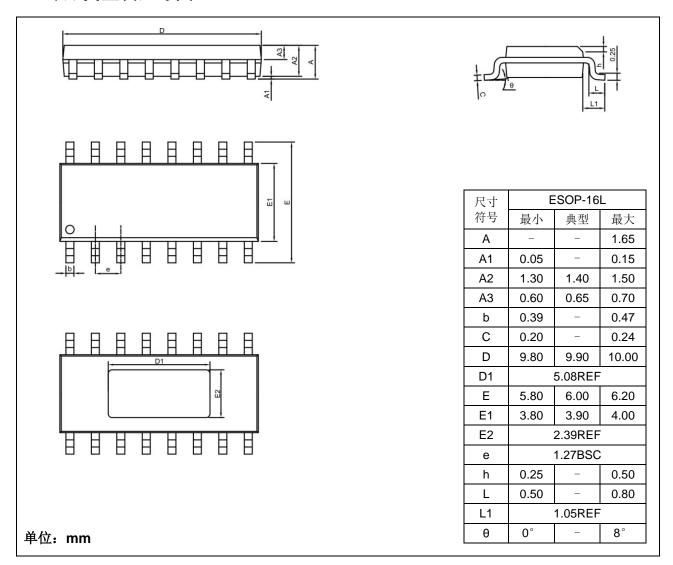
参数	符号	测试条件	最小值	典型值	最大值	单位
上升时间(Aout,Bout)	t _R	C _A =C _B =75pF,见图 4	1.0	-	2.0	μs
下降时间(A _{OUT} ,B _{OUT})	T_F	C _A =C _B =75pF,见图 4	1.0	-	2.0	μs
输入到输出的传输延迟	t _{PLH}	C _A =C _B =75pF,见图 4	-	_	3.0	μs
输入到输出的传输延迟	t _{PHL}	C _A =C _B =75pF,见图 4	-	-	3.0	μs

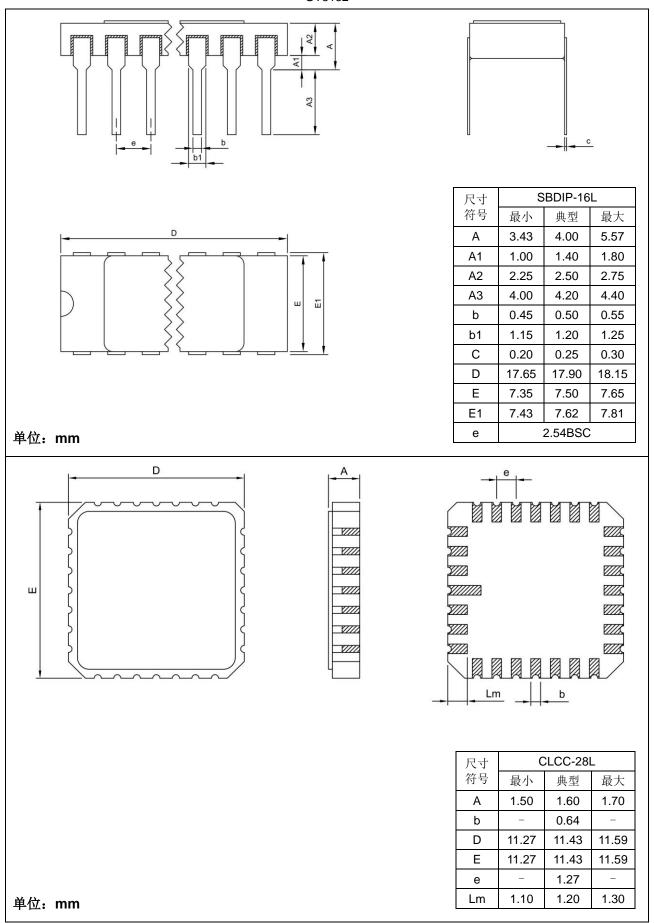
3.10 时序波形图

注:输出空载

图 4 时序波形图

3.11 典型应用电路


图 5 ARTIC 429 总线典型应用电路

4 订购信息

系列名称	产品型号	工作温度	封装形式	质量等级
	GY3182ESM	-55°C ~ +125°C	eSOP-16L	普军级
	GY3182ESN1	-55°C ~ +125°C	eSOP-16L	GJB7400 N1 级
GY3182	GY3182SB02M	-55°C ~ +125°C	SBDIP-16L	普军级
G13162	GY3182SB02B	-55°C ~ +125°C	SBDIP-16L	GJB597B B 级
	GY3182L01M	-55°C ~ +125°C	CLCC-28L	普军级
	GY3182L01B	-55°C ~ +125°C	CLCC-28L	GJB597B B 级

5 外形类型及尺寸图

