

GY506 / GY507 LC²MOS 16 / 8 通道模拟多路复用器

1 概述

GY506 / GY507 均为单芯片 CMOS 模拟多路复用器,分别内置 16 个通道和双 8 通道。GY506 根据 4 个二进制地址和一个使能输入的状态,将 16 路输入之一切换至公共输出。 GY507 根据 3 个二进制地址和一个使能输入的状态,将 8 路差分输入之一切换至公共差分输出。两款器件均提供 TTL 和 5V CMOS 逻辑兼容的数字输入。

GY506 / GY507 采用增强型 LC^2MOS 工艺设计,信号处理能力提高到 V_{SS} 至 V_{DD} ,并且可以在较宽的电源电压范围内工作。这些器件可以采用 10.8 V 至 16.5 V 范围内的任意单电源或双电源工作。同时还具有高开关速度和低导通电阻特性。

这两款器件电路电气特性完全兼容国外进口的 ADG506A / ADG507A 系列和 DG506A / DG507A,可实现 pin 对 pin 的原位插拔替换。

2 特性说明

- 最大供电电源电压: 44 V;
- 模拟信号范围: V_{SS}至 V_{DD};
- 单/双电源供电;
- 宽电源电压范围: 10.8 V 至 16.5 V;
- 低功耗: 28 mW (最大值);
- 低泄漏: 20 pA (典型值);
- 先开后合式开关动作,从而保护输入信号不受瞬时短路影响;
- 可提供 28 引脚 SOP、TSSOP、CSOP、WCDIP、WSBDIP、CLCC 封装。

3 技术说明

3.1 引脚图

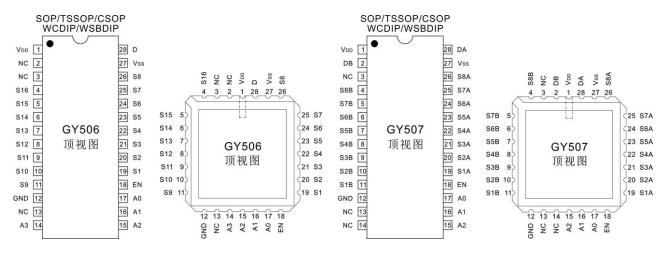


图 1 图 2

3.2 引出端功能

GY506 引出端功能

引脚名称	说 明
D	复用端,可做输入或输出端
S1 ~ S16	源极端,可做输入或输出端
A0 ~ A3	二进制地址输入端
EN	高电平有效使能端。如果为低电平,则器件禁用,所有通道开关断开;如果为高电平,根据二进制地址确定将 16 路输入之一切换至公共输出。
V _{SS}	负电源输入端; 单电源供电时接地
V _{DD}	正电源输入端
GND	地
NC	空脚

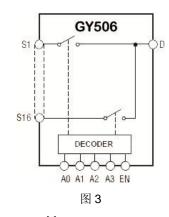
GY507 引出端功能

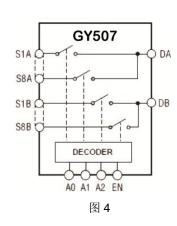
引脚名称	说 明
DA、DB	复用端,可做输入或输出端
S1A ~ S8A	源极端,可做输入或输出端
S1B ~ S8B	源极端,可做输入或输出端
A0 ~ A2	二进制地址输入端
EN	高电平有效使能端。如果为低电平,则器件禁用,所有通道开关断开。如果为高电平,根据二进制地址确定将 8 路输入之一切换至公共输出。
V _{SS}	负电源输入端; 单电源供电时接地。
V_{DD}	正电源输入端
GND	地
NC	空脚

3.3 真值表

GY506 真值表

А3	A2	A 1	Α0	使能端 (EN)	说明
Х	Х	Х	Х	0	禁用
0	0	0	0	1	连接源极端 S1
0	0	0	1	1	连接源极端 S2
0	0	1	0	1	连接源极端 S3
0	0	1	1	1	连接源极端 S4
0	1	0	0	1	连接源极端 S5
0	1	0	1	1	连接源极端 S6
0	1	1	0	1	连接源极端 S7
0	1	1	1	1	连接源极端 S8
1	0	0	0	1	连接源极端 S9
1	0	0	1	1	连接源极端 S10
1	0	1	0	1	连接源极端 S11


GY507 真值表


A2	A 1	Α0	使能端 (EN)	DA	DB
Х	Х	Х	0	禁用	禁用
0	0	0	1	连接源极端 S1A	连接源极端 S1B
0	0	1	1	连接源极端 S2A	连接源极端 S2B
0	1	0	1	连接源极端 S3A	连接源极端 S3B
0	1	1	1	连接源极端 S4A	连接源极端 S4B
1	0	0	1	连接源极端 S5A	连接源极端 S5B
1	0	1	1	连接源极端 S6A	连接源极端 S6B
1	1	0	1	连接源极端 S7A	连接源极端 S7B
1	1	1	1	连接源极端 S8A	连接源极端 S8B

GY506 真值表

А3	A2	A 1	A0	使能端 (EN)	说明
1	0	1	1	1	连接源极端 S12
1	1	0	0	1	连接源极端 S13
1	1	0	1	1	连接源极端 S14
1	1	1	0	1	连接源极端 S15
1	1	1	1	1	连接源极端 S16

3.4 内部功能框图

3.5 绝对最大额定值[1]

输入电压: V _{DD} 到 V _{SS} ···································
V _{DD} 到 GND ·······+25V
V _{ss} 到 GND
模拟输入端电压[2]: (以最先出现者为准)
S、D
数字输入端电压[2]: (以最先出现者为准)
A、EN ····································
持续电流: S、D ······20mA
脉冲电流(1ms 周期脉冲,最大 10%占空比)
S、D 40mA
贮存温度: T _{ST}
工作温度: T _A
结 温: T」······+150℃
引线耐焊接温度: T _H +300°C (10s)

注意: ^[1]: 等于或超出绝对最大额定值可能会导致产品永久性损坏;这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作;长期在超出最大额定值条件下工作会影响产品的可靠性;任何时候只能使用一个绝对最大额定值。

 $^{^{[2]}}$: 在 A、EN、S 或 D 处的过电压将被二极管箝位,电流应受限于最大额定值。

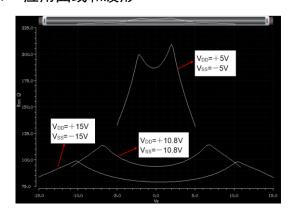
3.6 参数列表

(双电源供电) 除非另有说明, V_{DD} = 10.8V ~ 16.5V; V_{SS} = -10.8V ~ -16.5V

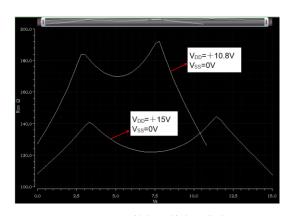
a skit, be ort.			25°C		-55°C ~ 125°C		ak n.	New Land	
参数名称	少 数石 你		典型	最大	最小	典型	最大	单位	测试条件
模拟信号电压	范围	V _{SS}		V_{DD}	V _{SS}		V_{DD}	V	
通道导通电阻	I D		280	450			600	Ω	$-10V \le V_S \le +10V$ $I_{DS} = 1 \text{mA}$
通担守通 电阻	1 NON			300			400	12	$V_{DD} = 15V (\pm 5\%)$ $V_{SS} = -15V (\pm 5\%)$
通道导通电阻	l漂移		0.6					%°C	$-10V \le V_S \le +10V$ $I_{DS} = 1 \text{mA}$
通道间导通电	阻匹配		5					%	$-10V \le V_S \le +10V$ $I_{DS} = 1 \text{mA}$
源极关断输入漏电	流 I _S (Off)		0.02	1			50	nA	$V_1 = \pm 10V$, $V_2 = \overline{+}10V$
漏极关断输入漏电流	GY506		0.04	1			200	nA	V .40V V T40V
I _D (Off)	GY507		0.04	1			100	nA	$V_1 = \pm 10V$, $V_2 = \pm 10V$
连通通道漏电流	GY506		0.04	1			200	nA	V .40V V .T40V
I _D (On)	GY507		0.04	1			100	nA	$V_1 = \pm 10V$, $V_2 = \mp 10V$
差分输出关断漏电流	I _{DIFF} (GY507)						25	nA	$V_1 = \pm 10V, V_2 = \mp 10V$
输入高电平电	玉 V _{INH}				2.4			V	
输入低电平电	压 V _{INL}						0.8	V	$V_{IN} = 0$ to V_{DD}
输入电流 I _{INL} I	或 I _{INH}						1	μA	VIN = O TO VDD
数字输入电容	₹ C _{IN}			8				pF	
转换时间 T _{TRA}	NSITION		200	300			400		
先开后合迟延	T _{OPEN}	25	50		10			20	$V_1 = \pm 10V, V_2 = +10V$
使能端延迟 To	_N (EN)		200	300			400	ns	$v_1 = \pm 10v, v_2 = +10v$
使能端延迟 To	_{FF} (EN)		200	300			400		
关断隔离	į	50	68					dB	$\begin{split} V_{EN} &= 0.8 V \;,\; R_L = 1 k \Omega \\ C_L &= 15 pF \;,\; V_S = 7 V \; rms \\ f &= 100 kHz \end{split}$
源极关断电容 Cs (Off)			5					pF	$V_{EN} = 0.8V$
漏极关断电容	GY506		44					pF	V _{EN} = 0.8V
C _D (Off)	GY507		22					pF	v EN = U.O V
电荷注入 Q _{INJ}			4					рС	$R_S = 0\Omega$, $V_S = 0V$
正常模式 I _{DD}		0.6					1.5	m^	
正常模式 I _{SS}			0.02				0.2	mA	$V_{IN} = V_{INL}$ or V_{INH}
正常模式以	J耗		10				28	mW	
功能测记	j.		-	参见表 2	2 真值表				-

(单电源供电) 除非另有说明, V_{DD} = +10.8V ~ +16.5V; V_{SS} = GND = 0V

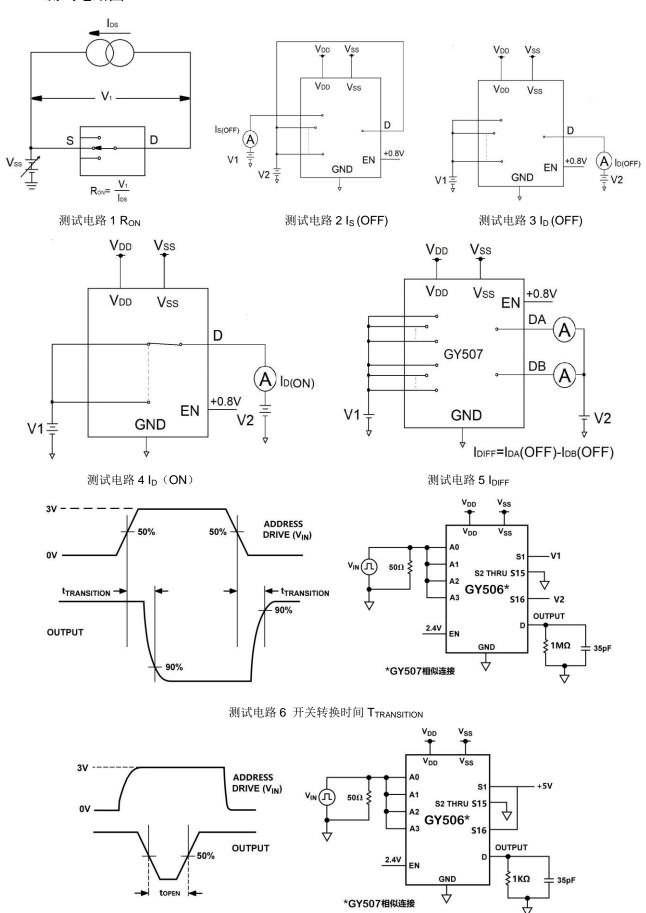
参数名称		25°C		-55	°C ~ 12	5°C	单位	测试条件
多数石体	最小	典型	最大	最小	典型	最大	平仏	侧风余件
模拟信号电压范围	V_{SS}		V_{DD}	V _{SS}		V_{DD}	V	
通道导通电阻 R _{ON}		0.5	0.7			1	kΩ	$0 \le V_S \le +10V$, $I_{DS} = 0.5mA$


西安硅宇微电子有限公司

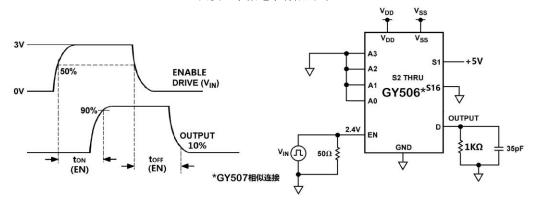
大学											
最小 典型 最大 最小 典型 最大 像小 典型 最大 像小 の	参数名称		25°C				单位	测试条件			
通道同号通电阻匹配 5			最小	典型	最大	最小	典型	最大	, , , , , ,	V4 # 12(1)	
源板美断輸入漏电流 S (Off)	通道导通电阻	l漂移		0.6					%°C	$0 \le V_S \le +10V$, $I_{DS} = 0.5mA$	
漏板关断倫入漏电流 GY506	通道间导通电	阻匹配		5					%	$0 \le V_S \le +10V$, $I_{DS} = 0.5mA$	
Box Coff GY507	源极关断输入漏电	流 I _S (Off)		0.02	1			50	nA	$V_1 = 10V/0V$, $V_2 = 0V/10V$	
To (Off)	漏极关断输入漏电流	GY506		0.04	1			200	nA	V 40V/0V V 0V/40V	
### ### ### ### ### ### ### ##	I _D (Off)	GY507		0.04	1			100	nA	$V_1 = 100/00 , V_2 = 00/100$	
Ib (On)	连通通道漏电流	GY506		0.04	1			200	nA	V 40V/0V V 0V/40V	
輸入高电平电压 V _{INH} 2.4 V 輸入低电平电压 V _{INL} 0.8 V 輸入电流 I _{INL} 或 I _{INH} 1 μA 数字输入电容 C _{IN} 8 pF 转换时间 T _{TRANSITION} 300 450 600 先开后已延 T _{OPEN} 25 50 10 ns 使能端延迟 T _{OPEN} 250 450 600 使能端延迟 T _{OPE} (EN) 250 450 600 を		GY507		0.04	1			100	nA	$V_1 = 10V/0V$, $V_2 = 0V/10V$	
輸入低电平电压 V _{INL} 0.8 V 輸入电流 I _{INL} 或 I _{INH} 1 μA 数字输入电容 C _{IN} 8 pF 转换时间 T _{TRANSITION} 300 450 600 先开后合迟延 T _{OPEN} 25 50 10 使能端延迟 T _{ON} (EN) 250 450 600 使能端延迟 T _{OFF} (EN) 250 450 600	差分输出关断漏电流	I _{DIFF} (GY507)						25	nA	$V_1 = 10V/0V$, $V_2 = 0V/10V$	
輸入电流 I _{INL} 或 I _{INL} 可 I _I	输入高电平电点	玉 V _{INH}				2.4			V		
输入电流 I _{INL} 或 I _{INH} 1 μA 数字输入电容 C _{IN} 8 pF 转换时间 T _{TRANSITION} 300 450 600 先开后合迟延 T _{OPEN} 25 50 10 使能端延迟 T _{ON} (EN) 250 450 600 大断隔离 50 68 dB V _{EN} = 0.8V, R _L = 1kΩ C _L = 15pF, V _S = 3.5V rms f = 100kHz 源极关断电容 C _S (Off) 5 pF V _{EN} = 0.8V 漏极关断电容 C _D (Off) 6 44 pF QY506 44 pF V _{EN} = 0.8V 电荷注入 Q _{INJ} 4 pC R _S = 0Ω, V _S = 0V 电荷注入 Q _{INJ} 4 pC R _S = 0Ω, V _S = 0V 正常模式 I _{DD} 0.6 1.5 mA V _{IN} = V _{INL} or V _{INH} V _{IN} = V _{INL} or V _{INH}	输入低电平电	压 V _{INL}						0.8	V	., .,	
转換时间 Trransition 300 450 600 先开后合迟延 Topen 25 50 10 使能端延迟 Ton (EN) 250 450 600 火町隔离 50 68 600 大断隔离 50 68 600 大野隔离 50 68 600 水町隔离 50 68 600 水町隔离 50 68 600 水町隔离 068 08 水町隔离 大町町の出版 水町の品が「町面」」 水町の品が「町面」」 水町の品が「町面」」 水町の品が「町面」」 水町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「町面」」 大町の品が「面」」 大町の品が「面」」 大町の品が「面」」 大町の品が「面」」 大町の品が「面」」 大町の品が「面」」 <td c<="" td=""><td>输入电流 I_{INL}</td><td>或 I_{INH}</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>μΑ</td><td>$V_{IN} = 0$ to V_{DD}</td></td>	<td>输入电流 I_{INL}</td> <td>或 I_{INH}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>μΑ</td> <td>$V_{IN} = 0$ to V_{DD}</td>	输入电流 I _{INL}	或 I _{INH}						1	μΑ	$V_{IN} = 0$ to V_{DD}
先开后合迟延 TOPEN 25 50 10 使能端延迟 TOPEN (EN) 250 450 600 美断隔离 50 68 600 が限決断电容 Cs (Off) 5 68 0 源极关断电容 Cs (Off) 5 pF Ven = 0.8V 漏极关断电容 Cs (Off) 5 pF Ven = 0.8V 場板关断电容 Cs (Off) 44 pF Ven = 0.8V 日荷注入Qinj 4 pC Rs = 0Ω, Vs = 0V 正常模式 IDD 0.6 1.5 mA 正常模式 IDD 0.6 1.5 mA 正常模式 J和 10 25 mW	数字输入电容	₹ C _{IN}			8				pF		
使能端延迟 T _{ON} (EN) 250 450 600	转换时间 T _{TRA}	NSITION		300	450			600			
使能端延迟 T _{ON} (EN) 250 450 600	先开后合迟延	T _{OPEN}	25	50		10					
美断隔离 50 68 dB V _{EN} = 0.8V , R _L = 1kΩ C _L = 15pF , V _S = 3.5V rms f = 100kHz 源极关断电容 C _S (Off) 5 pF V _{EN} = 0.8V 漏极关断电容 C _D (Off) GY506 44 pF V _{EN} = 0.8V 电荷注入 Q _{INJ} 4 pC R _S = 0Ω , V _S = 0V 正常模式 I _{DD} 0.6 1.5 mA 正常模式功耗 10 25 mW	使能端延迟 To	_N (EN)		250	450			600	ns	$V_1 = 10V/0V$, $V_2 = 10V$	
关断隔离 50 68 dB C _L = 15pF , V _S = 3.5V rms f = 100kHz 源极关断电容 C _S (Off) 5 pF V _{EN} = 0.8V 漏极关断电容 C _D (Off) GY506 44 pF V _{EN} = 0.8V 电荷注入 Q _{INJ} 4 pC R _S = 0Ω , V _S = 0V 正常模式 I _{DD} 0.6 1.5 mA 正常模式 J _D 10 25 mW	使能端延迟 To	_{FF} (EN)		250	450			600			
漏极关断电容 C_D (Off) GY506 44 pF $V_{EN} = 0.8V$ 电荷注入 Q_{INJ} 4 pC $R_S = 0\Omega$, $V_S = 0V$ 正常模式 I_{DD} 0.6 1.5 mA 正常模式功耗 10 25 mW	关断隔离	Ş	50	68					dB	$C_L = 15pF, V_S = 3.5V rms$	
CD (Off) GY507 22 pF V _{EN} = 0.8V 电荷注入 Q _{INJ} 4 pC R _S = 0Ω , V _S = 0V 正常模式 I _{DD} 0.6 1.5 mA 正常模式功耗 10 25 mW	源极关断电容(Cs (Off)		5					pF	V _{EN} = 0.8V	
CD (OII) GY507 22 pF 电荷注入 QINJ 4 pC R _S = 0Ω , V _S = 0V 正常模式 I _{DD} 0.6 1.5 mA 正常模式功耗 10 25 mW	漏极关断电容	GY506		44					pF	V 0.0V	
正常模式 I _{DD} 0.6 1.5 mA 正常模式功耗 10 25 mW	C _D (Off)	GY507		22					pF	$V_{EN} = 0.8V$	
正常模式功耗 10 25 mW V _{IN} = V _{INL} or V _{INH}	电荷注入 Q _{INJ}			4					рС	$R_S = 0\Omega$, $V_S = 0V$	
正常模式功耗 10 25 mW	正常模式 I _{DD}			0.6 1.		1.5	mA	, , , , , , , , , , , , , , , , , , ,			
TH 轮测设	正常模式功	正常模式功耗		10				25	mW	$V_{IN} = V_{INL} \text{ Or } V_{INH}$	
功能测试 参见表 2 真值表 -	功能测记	7		:	参见表 2	2 真值表	ξ			-	


ESD (静电放电) 敏感器件,大于等于 4000V 的静电电荷很容易积聚在人体和测试设备上,无需检测即可放电。虽然 GY506 / GY507 具有专门的 ESD 保护电路,但在遭受高能静电放电时器件可能会发生永久性损伤。因此,建议采取适当的防静电预防措施,以避免性能下降或功能丧失。

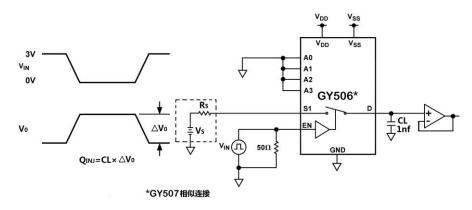
3.7 应用曲线和波形



不同 V_{DD} (V_{SS}) 下 R_{ON} 性能 (双电源供电, $T_A = 25$ °C)

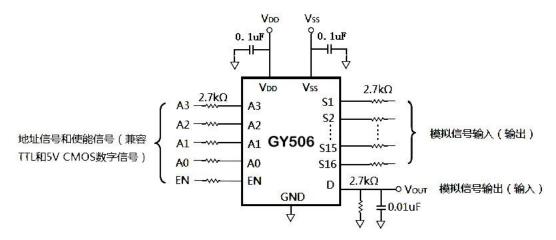

不同 V_{DD} (V_{SS}) 下 R_{ON} 性能(单电源供电, $T_A = 25$ °C)

3.8 测试电路图



测试电路 7 先开后合迟延 TOPEN

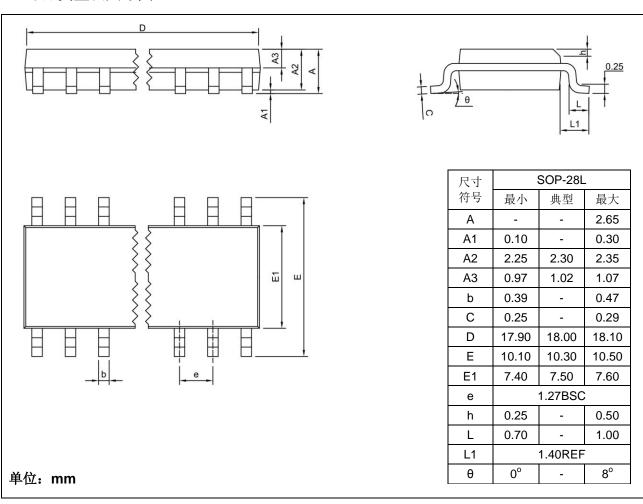
西安硅字微电子有限公司

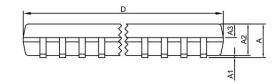


测试电路 8 使能端延迟 T_{ON} (EN)、T_{OFF} (EN)

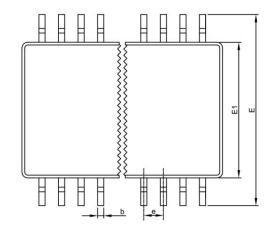
测试电路 9 电荷注入 Q_{INJ}

3.9 典型应用电路

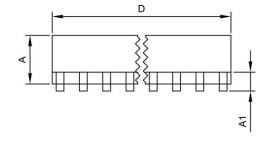

4 质量等级

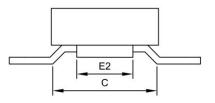

系列名称	产品型号	工作温度范围	封装和管脚数	质量等级
	GY506SI	-40°C ~ +85°C	SOP-28L	工业级
	GY506TSI	-40°C ~ +85°C	TSSOP-28L	工业级
	GY506SMN1	-55°C ~ +125°C	SOP-28L	GJB7400 N1 级
GY506	GY506TSMN1	-55°C ~ +125°C	TSSOP-28L	GJB7400 N1 级
G1506	GY506C02B	-55°C ~ +125°C	CSOP-28L	GJB597 B 级
	GY506WDB	-55°C ~ +125°C	WCDIP-28L	GJB597 B 级
	GY506WSB01B	-55°C ~ +125°C	WSBDIP-28L	GJB597 B 级
	GY506LB	-55°C ~ +125°C	CLCC-28L	GJB597 B 级

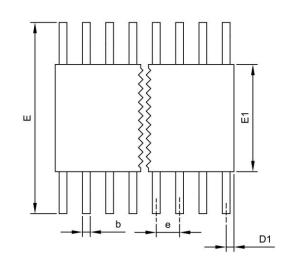
西安硅宇微电子有限公司


系列名称	产品型号	工作温度范围	封装和管脚数	质量等级
	GY507SI	-40°C ~ +85°C	SOP-28L	工业级
	GY507TSI	-40°C ~ +85°C	TSSOP-28L	工业级
	GY507SMN1	-55°C ~ +125°C	SOP-28L	GJB7400 N1 级
GY507	GY507TSMN1	-55°C ~ +125°C	TSSOP-28L	GJB7400 N1 级
G1507	GY507C02B	-55°C ~ +125°C	CSOP-28L	GJB597 B 级
	GY507WDB	-55°C ~ +125°C	WCDIP-28L	GJB597 B 级
	GY507WSB01B	-55°C ~ +125°C	WSBDIP-28L	GJB597 B 级
	GY507LB	-55°C ~ +125°C	CLCC-28L	GJB597 B 级

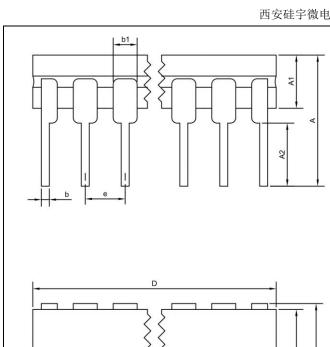
5 外形类型及尺寸图

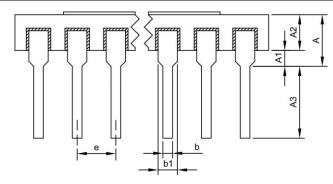


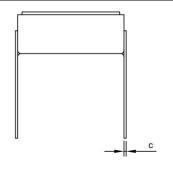


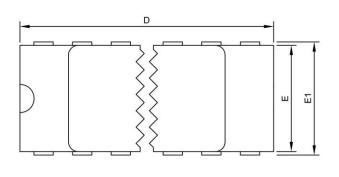

尺寸	T;	SSOP-28	3L			
符号	最小	典型	最大			
Α	1	1	1.20			
A1	0.05	ı	0.15			
A2	0.80	ı	1.00			
А3	0.39	0.44	0.49			
b	0.20	-	0.29			
С	0.14	-	0.18			
D	9.60	9.70	9.80			
Е	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
е	0.65BSC					
L	0.45	0.60	0.75			
L1	1.00BSC					
θ	0°	•	8°			

单位: mm


单位: mm

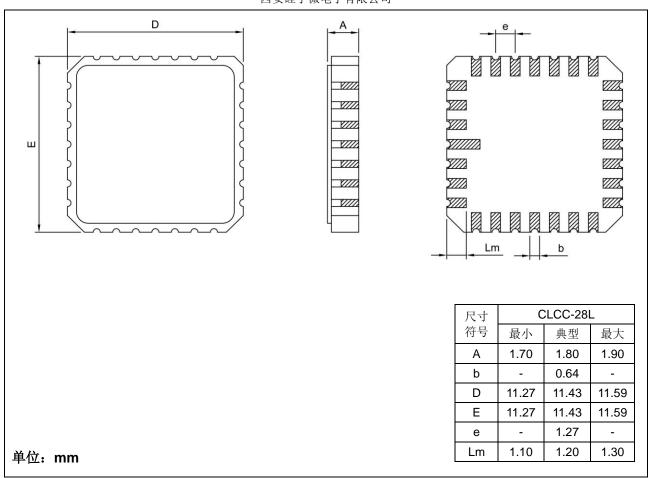

尺寸	CSOP-28L		
符号	最小	典型	最大
Α	1.95	2.15	2.35
A1	ı	ı	0.80
b	0.25	0.30	0.35
С	-	6.45	-
D	10.05	10.21	10.37
D1	1.065	1.17-	1.275
Е	13.17	13.27	13.37
E1	7.63	7.77	7.91
E2	3.48	3.60	3.72
е	-	0.65	-




e1	-\-\-c
	e1

尺寸	WCDIP-28L			
符号	最小	典型	最大	
Α	8.63	-	9.39	
A1	3.92	-	4.56	
A2	3.84	3.89	3.94	
b	0.41	0.46	0.51	
b1	1.47	1.52	1.57	
С	0.23	0.25	0.27	
D	36.58	36.83	37.08	
Е	16.59	16.74	16.89	
E1	14.51	14.66	14.81	
е	2.54BSC			

单位: mm



尺寸	WSBDIP-28L			
符号	最小	典型	最大	
Α	3.42	3.95	4.48	
A1	1.15	1.55	1.95	
A2	2.30	2.40	2.50	
А3	-	4.50	-	
b	0.45	0.50	0.55	
b1	1.15	1.20	1.25	
С	ı	0.25	-	
D	34.92	35.56	35.56	
Е	15.00	15.25	15.50	
E1	15.25	15.50	15.75	
е	2.54BSC			

单位: mm

