山东中柔新材料有限公司 500 吨/年 PPVE 项目

节能验收报告

项目建设单位:山东中柔新材料有限公司 验收单位:山东策问项目管理咨询股份有限公司 2025 年 3 月 31 日

验收人员

	姓名	单位	专业	签字
验收负责人	牛海洋	山东策问项目管理咨 询股份有限公司	化工	
	孙翼达	山东策问项目管理咨 询股份有限公司	建筑	
验收组成员	牛海洋	山东策问项目管理咨 询股份有限公司	化工	
	舒丽丽	山东策问项目管理咨 询股份有限公司	设备	

目录

一、资料筹备和验收组组成情况	1
1.资料筹备情况	1
2.验收组人员组成情况及验收方案	1
二、项目建设单位概况	6
1.建设单位基本情况	6
2.项目建设单位总体情况介绍	6
三、项目建设进展	7
1.项目基本情况介绍	7
2.项目开工、竣工等工程进展情况	8
四、项目建设方案	8
1.项目的实际建设情况	8
2.能源实际接入情况	33
五、主要用能设备及其能效水平	50
六、节能措施	56
七、计量器具	57
八、项目年综合能源消费量	58
九、项目能效水平	60
十、项目碳排放评价	63
十一、结论和问题	66
1.问题及建议	66
2.结论	66
附件1项目备案文件	67
附件2节能审查意见	68
附件3环评批复	71

附件4安全审查意见书	75
附件 5 营业执照	76
附件 6 土地证	77
附件7设计变更说明	81
附件8设备更换计划说明	82
附件9蒸汽供汽协议	83
附件 10 企业能源管理手册	85
附件11项目区域位置图	93
附件 12 项目总平面布置图	94
附件13装置区能源计量网络图	95
附件14现场验收照片	96
附件 15 计量器具现场验收照片	102
附件 16 建筑工程施工合同	103
附件17竣工验收报告	106
附件 18 建设工程施工合同发票	109
附件19部分设备设施采购合同	110
附件 20 部分设备试机材料	117
附件 21 评审意见	120

承诺书

我单位承诺《山东中柔新材料有限公司 500 吨/年 PPVE 项目节能验收报告》中所有内容均与本项目实际建设情况相符,若有不符或隐瞒,我单位承担全部法律责任。

特此承诺!

项目建设单位 (盖章):

项目建设单位负责人(签字):

日期: 2075.3.78

一、资料筹备和验收组组成情况

1.资料筹备情况

山东中柔新材料有限公司 500 吨/年 PPVE 项目已完成工程设计建设内容,设计建设技术资料已经齐备,需要节能整改的问题全部整改完成,已满足验收条件。

已筹备项目的设计图纸(PID图)、土建施工合同、竣工报告、项目组成一览表、设备台账、设备采购合同及采购、设备安装验收报告、节能措施一览表、能源计量器具一览表、能源计量网络图、节能管理制度文件、节能审查意见、项目节能报告(节能审查意见批复依据的版本)等资料全部准备齐全。建设单位已对项目的建设情况(建设地点、建设内容和规模、实际开工建设时间及建成时间)全部进行说明,针对项目参照的相关节能标准进行了提前收集,可进行资料查验。

2. 验收组人员组成情况及验收方案

(1) 验收组人员组成情况

根据项目行业类型、验收时间等要求,组建验收工作组,筹备验收工作。工作组应由具备节能验收工作能力的专业技术人员、专家等组成。

山东策问项目管理咨询股份有限公司针对500吨/年PPVE项目成立 了节能验收小组,小组成员构成及工作分工如下:

项目组成员: 牛海洋、孙翼达、舒丽丽及外聘专家

序号 姓名 人员分工 工作要求 备注 查验企业筹备验收资料,根据节能批 复文件及与批复一致的节能报告,现 1 牛海洋 资料查验/现场核验 场核查项目的建设情况、设备情况及 相关节能措施落实情况,并根据现场 核查结果编制节能验收报告 查验企业筹备验收资料,根据节能批 孙翼达 资料查验/现场核验 复文件及与批复一致的节能报告, 现 2 场核查项目的建设情况、设备情况及

表1项目组成员工作分工表

			相关节能措施落实情况,并根据现场 核查结果编制节能验收报告
3	舒丽丽	资料查验/现场核验	查验企业筹备验收资料,根据节能批 复文件及与批复一致的节能报告,现 场核查项目的建设情况、设备情况及 相关节能措施落实情况,并根据现场 核查结果编制节能验收报告
4	外聘专家 (3个)	资料查验/现场核验	查验企业筹备验收资料,根据节能批 复文件及与批复一致的节能报告,现 场核查项目的建设情况、设备情况及 相关节能措施落实情况,针对编制的 节能验收报告进行评审

(2) 验收方案

1) 明确验收范围

根据建设单位提供的基础资料,明确本次节能验收的验收范围,确定本次验收的验收范围为500吨/年PPVE项目。

序号	项目	内容	备注
		500 吨/年 PPVE 项目建设规模	
1	建设方案	500 吨/年 PPVE 项目总平面布置	
	7 69674 716	500 吨/年 PPVE 项目主要用能工艺以及辅助和附属生产工序	
	用能设备	500 吨/年 PPVE 项目主要用能设备	
2	节能技术和管理措施	500 吨/年 PPVE 项目节能技术措施	
2	7 肥权不和官生有.他	500 吨/年 PPVE 项目节能管理机制	
3	能源计量器具	500 吨/年 PPVE 项目能源计量器具配备情况	
4	能效水平	500 吨/年 PPVE 项目主要用能指标或主要工序	
	能源消费量	500 吨/年 PPVE 项目年综合能源消费情况	

表 2 节能验收范围内容一览表

2) 验收依据

(一) 相关法规、政策依据

《中华人民共和国节约能源法》(2018年修正)

《固定资产投资项目节能审查办法》(中华人民共和国国家发展和改革委员会令第2号)

山东省发展和改革委员会关于印发《山东省固定资产投资项目节能审查实施办法》的通知(鲁发改环资〔2023〕461号)

《固定资产投资项目节能审查系列工作指南》(2018年本)

《山东省固定资产投资项目节能验收管理办法(试行)》(鲁发改环资〔2024〕657号)

(二)节能工艺、技术、装备、产品等推荐目录,国家明令淘汰的用 能产品、设备、生产工艺等目录

《国家重点节能低碳技术推广目录(2017年本节能部分)》

《节能机电设备(产品)推荐目录》(第一批)(工信部〔2009〕第 41号)

《节能机电设备(产品)推荐目录》(第二批)(工信部〔2010〕第112号)

《节能机电设备(产品)推荐目录》(第三批)(工信部〔2011〕第42号)

《节能机电设备(产品)推荐目录》(第四批)(工信部〔2013〕第12号)

《节能机电设备(产品)推荐目录》(第五批)(工信部〔2014〕第 72号)

《节能机电设备(产品)推荐目录》(第六批)(工信部〔2015〕第72号)

《节能机电设备(产品)推荐目录》(第七批)(工信部〔2016〕第368号)

《"节能产品惠民工程"高效电机推广目录(第一批)》(国家发展改革委财政部 2010 年第 16 号)

《"节能产品惠民工程"高效电机推广目录(第二批)》(国家发展改革委财政部 2011 年第 4 号)

《"节能产品惠民工程"高效电机推广目录(第三批)》(国家发展改

革委财政部 2011 年第 16 号)

《"节能产品惠民工程"高效电机推广目录(第四批)》(国家发展改革委财政部 2012 年第 4 号)

《"节能产品惠民工程"高效电机推广目录(第五批)》(国家发展改革委财政部 2013 年第 42 号)

《"节能产品惠民工程"高效电机推广目录(第六批)》(国家发展改革委财政部 2014 年第 14 号)

《高耗能落后机电设备(产品)淘汰目录》(第一批)(工节〔2009〕第67号)

《高耗能落后机电设备(产品)淘汰目录》(第二批)(工节〔2012〕第14号)

《高耗能落后机电设备(产品)淘汰目录》(第三批)(工节〔2014〕 第16号)

《高耗能落后机电设备(产品)淘汰目录》(第四批)(工业和信息化部公告2016年第13号)

(三) 相关标准规范

《能源管理体系分阶段实施指南》(GB/T15587-2023)

《工业企业总平面设计规范》(GB50187-2012)

《设备及管道绝热技术通则》(GB/T4272-2008)

《能源审计技术通则》(GB/T17166-2019)

《低压配电设计规范》(GB50054-2011)

《供配电系统设计规范》(GB50052-2009)

《企业能量平衡通则》(GB/T3484-2009)

《用能单位节能量计算方法》(GB/T13234-2018)

《用能单位能源计量器具配备和管理通则》(GB17167-2006)

《重点用能单位节能管理办法》(国家发改委令〔2018〕15 号)

《综合能耗计算通则》(GB/T2589-2020)

《通风机能效限定值及能效等级》(GB19761-2020)

《电动机能效限定值及能效等级》(GB18613-2020)

《电力变压器能效限定值及能效等级》(GB20052-2024)

《节水型企业评价导则》(GB/T7119-2018)

《外墙外保温工程技术标准》(JGJ144-2019)

《评价企业合理用电技术导则》(GB/T3485-1998)

《评价企业合理用热技术导则》(GB/T3486-1993)

《清水离心泵能效限定值及节能评价值》(GB19762-2007)

《容积式空气压缩机能效限定值及能效等级》(GB19153-2019)

《冷水机组能效限定值及能效等级》(GB19577-2015)

《普通照明用 LED 产品能效限定值和能效等级》(GB30255-2019)

《普通照明用 LED 平板灯能效限定值及能效等级》(GB38450-2019)

(四) 其他支撑材料

滨州市行政审批服务局关于《山东中柔新材料有限公司 500 吨/年 PPVE 项目节能报告》的审查意见(滨审批五(2024)37 号);

山东中柔新材料有限公司 500 吨/年 PPVE 项目节能报告; 企业提供的其他材料。

- 3)验收程序
- ①成立工作组

根据具体项目情况,成立验收工作小组,工作小组根据验收项目整理资料清单,由企业根据资料清单筹备项目验收资料。

②资料查验

验收小组全面收集并认真查阅相关节能验收的法律、法规及政策,依

据《中华人民共和国节约能源法》(2018年修正)、《固定资产投资项目节能审查办法》(国家发改委 2023年第2号)、《山东省固定资产投资项目节能审查实施办法》的通知(鲁发改环资〔2023〕461号)、《固定资产投资项目节能审查系列工作指南》(2018年本)、《山东省固定资产投资项目节能验收管理办法(试行)》(鲁发改环资〔2024〕657号)等文件要求,对企业提供的验收筹备资料进行查验。

③开展现场核验

根据资料查验相关情况,工作小组及邀请外聘专家对项目的建设方案、 用能设备、节能措施、计量器具配备以及项目能源利用情况等是否落实节 能审查要求,是否满足节能标准规范等的要求情况进行现场核验。

4)确定验收结果

工作小组通过资料查验及现场核验的方式,编制节能验收报告,并出具验收意见。

二、项目建设单位概况

1.建设单位基本情况

建设单位名称: 山东中柔新材料有限公司

法定代表人: 于克波

项目联系人及联系方式:张旭杰 15376499918

2.项目建设单位总体情况介绍

山东中柔新材料有限公司是一家从事化学品生产,化学品经营,货物进出口等业务的公司,成立于 2020 年 11 月 19 日,公司坐落在山东省,详细地址为:山东省滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉路口西北角;经国家企业信用信息公示系统查询得知,山东中柔新材料有限公司的信用代码/税号为 91371602MA3UE3PP8D,法人是于克波,注册资本为 7683.3266 万,企业的经营范围为:许可项目:危险化学品生产;

危险化学品经营。(依法须经批准的项目,经相关部门批准后方可开展经营活动,具体经营项目以相关部门批准文件或许可证件为准)一般项目:货物进出口;新材料技术研发;合成材料制造(不含危险化学品);合成纤维销售;新型膜材料销售;功能玻璃和新型光学材料销售;显示器件销售;专用化学产品销售(不含危险化学品);表面功能材料销售;新型有机活性材料销售;高纯元素及化合物销售;技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广。(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)

三、项目建设进展

1.项目基本情况介绍

项目名称: 500 吨/年 PPVE 项目

项目性质:新建

建设规模及内容:该项目拟在山东中柔新材料有限公司现有厂区内建设,不新征土地。项目占地 840m²,总建筑面积 5745 平方米,新建生产装置一座,2#配电室一座(独立装置),该项目新增设备 259 台(套),其中包括主要耗能设备 134 台(套),项目采用加成及精馏提纯工艺,建成后年产 PPVE 产品 500 吨,副产表面活性剂(三聚体)200 吨、副产 PFPE产品 500 吨。

根据项目实际建设情况,PPVE 装置(总平中对应三号生产装置)内含PPVE 装置一套,可达到年产 PPVE 产品 500 吨,副产表面活性剂(三聚体)200 吨、副产 PFPE 产品 500 吨的生产规模,生产装置及生产规模未发生变化。装置占地、建筑面积及设备数量较节能报告(修改版)及节能审查意见发生略微调整。项目 PPVE 装置(总平中对应三号生产装置)占地面积为878m²,建筑面积为3830m²,2#配电室占地面积为320m²,建筑面积为960m²,500 吨/年 PPVE 项目总占地面积为1198m²,总建筑面积为4790m²。

其中 2#配电室占地面积、建筑面积未发生变化, PPVE 装置占地面积与建筑面积发生变化, 根据实际生产需求, PPVE 装置(三号生产装置)主体由七层变更为五层局部八层, 详见附件 7 设计变更说明。设备数量虽未发生变化, 但部分原计划新上的备用设备未购买, 部分功率较小的设备未进行统计, 设备变动对总体能耗的影响较小。

2.项目开工、竣工等工程进展情况

项目建设期 18 个月,项目前期准备时间为 2023 年 10 月,于 2024 年 8 月正式开工,2025 年 3 月竣工。

四、项目建设方案

以节能报告(修改版)及节能报告审查意见确定的建设规模、总平面布置、工艺方案、用能系统(工序/环节)建设方案为依据,对照项目设计、施工和竣工技术等资料,核实本项目的落实情况。

- 1.项目的实际建设情况
 - (1) 项目组成情况

项目的实际建设内容与规模:

该项目拟在山东中柔新材料有限公司现有厂区内建设,不新征土地。项目占地 1198m²,总建筑面积 4790m²,新建生产装置一座,2#配电室一座(独立装置),该项目新增设备 259 台(套),其中包括主要耗能设备 134台(套),项目采用加成及精馏提纯工艺,建成后年产 PPVE 产品 500 吨,副产表面活性剂(三聚体)200吨、副产 PFPE 产品 500吨。

项目组成一览表如下所示:

表 3 项目组成一览表

类别	名称	主要建设内容及规模	备注
主体工程	PPVE 装 置	于厂区西北角预留空地建设 PPVE 装置,总建筑面积 4790 平方米,项目建成后可达到年产 PPVE 产品 500 吨、表面活性剂(三聚体)200吨、PFPE 产品 500 吨的规模。	新建
辅助	检修车间	依托厂区现有1座检修车间(1层)	依托现有

	1		
工程	控制室	本项目依托厂区现有控制室,采用分散型控制系统(DCS)、独立的安全仪表系统(SIS)和气体检测系统对主要工艺装置的生产过程进行集中监控和管理。	依托现有
	办公楼	依托厂区现有办公楼。	依托现有
	供电	山东中柔新材料有限公司依托现有 1#总变配电所,新增 1 台SCB13-16000KVA-35KV/10KV 的变压器,主要供本项目及后期新上项目使用,用电引自国家电网秦台 110KV 变电站,采用双回路供电,由凤凰六路经架空引入 2 条 35KV 高压电缆到总变配电所,由 35KV 降压至 10KV,经高压出线柜引 2 条 10KV 高压线进入厂区新建的 2#区域配电室,10KV 变压器降压到 0.4KV 供给低压母排,最后供给本装置的用电设备使用。 本项目新建的 2#区域配电室目前仅供三号生产装置(500 吨/年PPVE 项目)使用,经计算,项目建成后新增用电负荷为 711.27KVA,2#区域配电室新上的 1 台 SCB14-2500-10KV/0.4KV 变压器可以满足本项目使用。	1#配电室 为化域 /2#区室为 配 新建
	供热	项目所耗蒸汽由山东滨州滨北热电有限公司供应。该公司外供蒸汽 320t/h, 富余蒸汽 90t/h, 供汽参数为供汽参数为 0.5-1.1MPa、170-300℃左右。本项目蒸汽所需消耗量为 1.13t/h, 可满足本项目使用。本项目脱羧工序中烘盐器和脱羧釜需要最高温度为 280℃, 反应温度需稳定、持续达到 280℃左右, 为保证设备运行效率及安全, 本项目设置 3 台 120kw 电导热油炉, 为项目设备供热。	依托现有
	供水	本项目生产用水及生活用水均来源于秦台水库,水源为黄河水,供水能力为10万 m³/d,目前实际供水5万 m³/d,本项目年用水量为13927.8m³/a,可以满足项目用水需要。	依托现有
公用工程	排水	本项目生活污水经化粪池预处理后排入厂区现有污水处理站综合处理,经处理达标后排入北城污水处理厂;循环冷却系统排水和纯水系统排水直接排入北城污水处理厂;生产过程中产生的高盐废水及酸性废水,排入厂区现有污水处理站预处理,预处理后排入北城污水处理厂处理,达标后排污秦台河。	依托现有
	循环水	厂区共设置循环水站 1 处,现有循环水供应能力为 1000m³/h,剩余循环水供水能力为 550m³/h,本项目建成后循环水需求负荷为 100m³/h,可满足项目需求。	依托现有
	消防	于循环水池东侧设置消防水池1座,有效容积1000m3	依托现有
	动力车间	依托厂区现有动力车间,建筑面积约 936m²。动力车间内设消防泵房、制冷机、纯水装置、空压机、供氮系统等。 纯水装置:项目纯水依托厂区现有的高纯水机组制备,设计负荷10m³/h,剩余供水能力为 5.33m³/h,本项目建成后纯水需求负荷0.49m³/h,可满足项目需求。 供风系统:本项目依托现有动力车间内现有现有 2 台空压机组,为本项目提供所需仪表空气,设计负荷为 2100Nm³/h,余量为900Nm³/h,该项目仪表空气消耗量为 40Nm³/h,288000Nm³/a,可以满足本项目使用需求。 厂区氮气消耗均采用外购液氮,经汽化后,供给各装置使用。冷冻系统:本项目消耗的冷冻水均依托企业现有冷冻水机组供应。现有-35℃冷冻水装置设计冷量为 80万 Kcal,现有装置冷量消耗为 48万 Kcal,本项目-35℃冷冻水冷量需求为 8.62万 Kcal,现有-35℃冷冻水表置可以满足本项目使用;企业现有-17℃冷冻水装置设计冷量为40.9万 Kcal,现有装置冷量消耗为 28万 Kcal,本项目-17℃冷冻水冷量需求为 3.86万 Kcal,现有-17℃冷冻水装置可以满足本项目使用;企	依托现有

		业现有5℃冷冻水装置设计冷量为80万 Kcal,现有装置冷量消耗为24	
		万 Kcal, 本项目 5 \mathbb{C} 冷冻水冷量需求为 9.49 万 Kcal, 现有 5 \mathbb{C} 冷冻水	
		装置可以满足本项目使用。	
	1 // 人 庄	本项目物料储存依托现有1#仓库,用于贮存溶剂二乙二醇二甲醚、	公 ₩ ₩ ★
	1#仓库	四甲基乙二胺等原料。	依托现有
储运	2#仓库	依托2#仓库用于贮存无水碳酸钾/钠、氟氮气、氨水等原材料,	依托现有
工程		PPVE、表面活性剂、PFPE 等产品。	化
	罐区	依托 2 个 20m³ HFPO 储罐用于储存六氟环氧丙烷,依托现有 1 个	依托现有
	唯区	30m3 氢氧化钠储罐用于储存碱液。	W.10-20-11
		有机废气引至厂区现有焚烧炉焚烧处理,焚烧烟气经"急冷降温+	
		水喷淋+两级碱洗塔+SCR+活性炭喷射+布袋除尘器"处理, 处理后经高	依托现有
	废气治理	45m 排气筒 DA001 排放。	
		酸性废气由新建的一套三级水喷淋塔+两级碱洗塔处理,废气处理	新建
		达标后经高 34m 排气筒 DA004 排放。	471 ~
		危废暂存间废气依托现有1套"1级碱喷淋+活性炭吸附装置"处理,	依托现有
		处理后的废气通过排气筒 DA003 排放。	W 10 50 U
		依托现有污水处理站,采用"预处理+UASB+好氧池+沉淀池"处理	
环保		工艺, 预处理包括酸性废水预处理、高盐废水预处理, 处理能力为	
工程		200m ³ /d,污水处理站余量为82.99m ³ /d,本项目污水产生量为	
		11.51m³/d,可以满足本项目处理要求。	
	废水治理	本项目产生的酸性废水和高盐废水分别经预处理后与生活污水共	依托现有
		同排入综合废水处理,处理达标后与循环冷却排水、纯水系统排水一	
		起排入北城污水处理厂,经污水处理站处理后各项指标能够稳定达到	
		《石油化工工业污染物排放标准》(GB31571-2015)间接排放标准以	
		及北城污水处理厂进水水质要求。	
	 固体废物	危险废物委托有资质单位处置;一般工业固废均妥善处置;生活	依托现有
		垃圾定期清运。	ないログにお

(2) 总平面布置情况

节能报告(修改版)及节能报告审查意见确定的项目总平面布置情况为:项目拟在山东省滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉路口西北角山东中柔新材料有限公司原厂区内建设。

山东中柔新材料有限公司厂区由中间主要道路分为南、北两部分,拟建项目中 PPVE 装置(三号生产装置)位于道路以北西侧中部,其北侧、东侧均为预留用地,南侧为在建 3000 吨六氟环氧丙烷项目。拟建项目生产车间共 9 层布置,按照生产工艺流程合理布置设备。新建的 2#区域配电室位于三号生产装置(500 吨/年 PPVE 装置)正东侧。

项目新上的导热油炉位于三号生产装置内部。依托的尾气处理装置、 污水处理站位于厂区的西南角; 依托的罐区, 位于尾气处理装置及污水处

理站的东北方向;依托的动力车间(内含纯水装置、空压站、冷冻站、氮气供应装置)位于罐区的正北侧;依托的循环水站位于动力车间的西侧;项目依托的1#仓库、2#仓库位于污水处理站东北侧;项目依托的控制室位于2#仓库的正北侧;项目依托的厂区1#总变配电室位于控制室的东北角。

根据项目实际建设情况, PPVE 装置设备层发生调整, 由原来的 9 层设备层, 变更为 4 层局部 6 层、7 层, 其他建(构)筑物总平面布置与项目节能报告(修改版)及节能报告审查意见确定的总平面布置情况一致。

(3) 用能方案的落实情况

节能报告(修改版)及节能报告审查意见确定的项目用能方案为:

1) PPVE 制备

①加成工序

六氟环氧丙烷自六氟环氧丙烷装置六氟环氧丙烷储槽,用泵将六氟环氧丙烷输送至HFPO 计量槽,收料液位在50%-70%之间。

六氟环氧丙烷装置检修停车时,通过罐区输送泵将六氟环氧丙烷打入六氟环氧丙烷计量槽。收料完毕,打开六氟环氧丙烷计量槽出料切断阀及HFPO 汽化器气相平衡管路,通过调节六氟环氧丙烷汽化槽调节阀,维持HFPO 汽化器出口压力在 0.15-0.4MPa 之间。

使用桶装(200L)二乙二醇二甲醚、四甲基二乙胺,分别打入到二乙二醇二甲醚溶剂计量槽、四甲基二乙胺溶剂计量槽。反应前,将二乙二醇二甲醚溶剂计量槽、四甲基二乙胺计量槽内溶剂,利用重力分别加入到反应釜中,搅拌均匀后将釜内抽空至-99~-95Kpa,稳定一定的条件,准备向加成釜内投料,在投料期间保持釜内压力小于 0.3MPa,最高不能高于0.5MPa,同时严格控制釜内温度在 30℃以下。在确保压力、温度的参数条件下,使用 2~2.5h 通入 300-340Kg 六氟环氧丙烷,然后搅拌 0.5h,静止 0.5h,得到加成后的清液,并从釜内放出。

打开加成釜和清液槽上的气相平衡阀门,先打开视镜上方的阀门,再缓慢打开视镜下方的放料阀门,当放入清液计量槽的重量约为250Kg左右把放料阀门关小,放慢出料速度以防止溶剂放入清液槽中。待有浑浊灰色在视镜出现时迅速出料阀门。

②分馏工序

分馏工序设置 1#分馏塔、2#分馏塔、3#分馏塔、4#分馏塔对反应清液进行分离提纯,得到的各个加成产物用于后续产品生产。

A、1#分馏塔加料、出料

把从加成釜内放出的加成清液,通过计量泵向 1#分馏塔中打入 80%液位的加成清液,开启蒸汽调节阀,调整好开度,控制釜温在 60~90℃左右,待建立回流后,先全回流 4h,控制塔顶压力 0.3~0.35Mpa,待釜温稳定后,再慢慢采出。开启计量泵向分馏塔中加料,加料速度及采出速度控制在100~180kg/h,塔釜组分控制在五氟丙酰氟≤0.1%,塔顶组分控制在二加成≤1%。保持塔顶、塔釜组分合格。

B、2#分馏塔加料、出料

利用 1#分馏塔、2#分馏塔两塔的压力差向 2#分馏塔进料,缓慢打开 1#分馏塔向 2#分馏塔进料阀门,进料速度稳定在 100~175kg/h。当 2#分馏塔液位到 45%~50%时,开启 2#分馏塔的蒸汽调节阀,使塔内温度控制在 78℃左右,建立回流后,全回流 4h,保持 2#分馏塔塔顶压力维持在 0.1~0.15Mpa,调节回流采出,控制回流量 350~500kg/h,塔釜液位控制在 55%~65%,塔顶顶温控制在 66~65℃,先收集过渡料,待塔顶组分全氟(2-甲基-3-氧杂己基)氟化物≥98%慢慢采出。

C、3#分馏塔加料、出料

当 2#分馏塔釜二加成≤1%时,且液位高于 20%时,打开 2#分馏塔的 塔釜阀门,利用压力差将物料打入 3#分馏塔塔内进行间歇精馏。当 3#分馏 塔液位达到 60%时, 开启 3#分馏塔的蒸汽调节阀, 控制塔内温度 90~130℃左右, 建立回流后全回流 4h, 调节回流采出, 控制塔釜液位在 45%~65%, 塔顶温度控制稳定, 待塔顶组分三加成≥95%慢慢采出。

D、4#分馏塔加料、出料

当 3#分馏塔塔釜三加成≤1%时,且液位高于 20%时,打开 3#分馏塔的塔釜出料阀门,通过压差将物料打入 4#分馏塔塔内进行间歇精馏。当 4#分馏塔液位到 60%时,开启 4#分馏塔的蒸汽调节阀,使塔顶温度控制在100~130℃左右,建立回流后,全回流 4h,调节回流采出,塔釜液位控制在 55%~65%,控制塔顶顶温稳定后,待塔顶组分四加成≥98%慢慢采出。当塔釜四加成≤5%时,且液位高于 20%时,塔釜温度降至 50℃以下后,将釜夜排放至 4#分馏塔釜粗品槽中。

③脱羧工序

A、脱附反应

将一定量的钾盐(袋装)通过自动上料装置把钾盐加入烘盐器中烘干,烘干后,向脱羧釜内加入1000kg,在95~115℃温度条件下使用7h通入1000kg二加成,充分反应成盐后,升高釜温150~250℃,收集裂解物料至计量槽。

在烘盐器中投入钾盐 1000kg, 把导热油的加热温度设定在 120℃。保持 120℃恒温烘盐 2h, 再把温度调到 200℃, 保持 200℃恒温烘盐 2h, 继续升温至 280℃以上, 恒温 8h, 向脱羧釜中加入钾盐 1000kg。

加入钾盐后, 脱羧釜开启搅拌持续 2h, 搅拌期间将釜底温度缓慢升至 110~150℃, 温度达到标准后, 向脱羧釜内充入氮气, 将脱羧釜内的压力升至 200kpa, 准备投料。开启计量泵, 打开计量泵进料阀门向脱羧釜中投料, 投料速度为 2~3kg/min, 当釜内压力升至 450kpa 左右时, 再打开脱羧釜回收, 把脱羧釜内压力放空至 200~230kpa。当累积投料 50kg 左右, 放空时把

釜内压力放空至 200~230kpa, 再向釜内充入氮气至 400kpa, 反复置换 2 次, 把釜内生成的二氧化碳置换出来, 然后开始收料。按上述操作, 向脱羧釜内累积投料 200kg 二加成。投料完毕后,继续搅拌 30min, 再将温度升至130~135℃,搅拌 2h, 使反应的酰氟充分反应掉。

将冷凝器收集到的组分进行检测,当 PPVE 含量高于 2%时,将收集到的清液转入加成计量槽,通过泵将物料打入 8#精馏塔进行 PPVE 分离,将分离得到的 PPVE 打入水洗釜中进行水洗,塔釜中的二聚体通过泵打入计量槽中继续进行脱反应。

打开放空阀门,缓慢将釜内压力缓慢放空至常压,向釜内通入高纯氮气至釜内压 400kpa,再打开放空调节阀,将釜内压力放空至常压,关闭放空阀门,按上述操作使用高纯氮气置换 2 次。

使用高纯氮气置换完毕后,打开脱羧釜收料阀门,当加热油机组温度升至 240℃,停顿 lh 再将油温升至 250℃,保持不变,当视镜口回流物料很少时再将加热油机组升高 20℃,加热油机组的温度最高升温至 300℃,当没物料流出,计量槽半小时电子称不变时,脱羧结束,待温度降至常温后,准备放盐,将废盐放入吨桶中进行收集,定期按照危废委外处理。

B、水洗

开启水洗釜搅拌,加入一定量的纯水,开启盐水进出口阀门,把釜内温度降至 $0\sim5$ °C,再向釜内加入粗醚。搅拌 1.5h 后,停止搅拌,并关闭盐水的进出口阀门,水洗期间釜内温度控制在 $0\sim5$ °C。停止搅拌后静置 120min,静置期间釜内的温度控制 $0\sim5$ °C。

打开底部的放料阀门将水洗后的粗醚放入计量槽中,放料量达到投料量的 85%时,把放料阀门关小缓慢放料,仔细观察视镜内的物料,当出现分层后,迅速关闭取样口侧面的水洗后粗醚计量槽的阀门。

4)精馏工序

把水洗后的粗醚加入前馏分精馏塔中脱轻,把轻组分与氟醚分离后,将前馏分精馏塔釜得到的混合物料加入正馏分精馏塔内进行脱重,通过精馏得到≥99.50%的氟醚。

开启计量泵向 5#分馏塔中打入清液至约 50%液位,缓慢打开塔釜蒸汽阀门调节阀控制温度 30~35℃左右,控制精馏速度,调节好回流采出,控制塔顶温度 23.2℃,回流流量 329-500kg/h 左右,塔顶收集前馏分。

5#分馏塔釜内,轻组分≤0.01%时,利用压力差向6#精馏塔加料,加料速度为50kg/h,当塔釜液位计到达1/2左右,开启6#精馏塔的蒸汽阀门,控制塔釜温度30~45℃,回流量为300-500kg/h左右,采出收集PPVE成品。当釜内PPVE小于0.5%时,开启精馏塔釜底部放净阀排放残液。

6#精馏塔塔釜底残液经一段时间收集后,用泵向7#精馏塔打入精馏残液进行间歇精馏二次提纯。待塔釜液位达到80%时,开启蒸汽加热,控制塔釜温度控制塔釜温度30~45℃,待建立回流后,先全回流4h,待塔顶温稳定,塔顶组分合格后,再慢慢采出。待顶部采出消失后,关闭蒸汽加热,待塔釜温度降至常温后,打开精馏塔底部放净阀排放残液。

在酰氟回收计量槽液位达到 60%时进行取样,当其中 PPVE 组分大于 5%时将收集液打入 7#精馏塔内进行间歇精馏。待塔釜液位达到 80%时,开启蒸汽加热,控制塔釜温度 30~45℃,待建立回流后,先全回流 4h,待塔顶温稳定,塔顶组分合格后,再慢慢采出。待塔釜组分中 PPVE 含量<0.5%,将釜残用泵打入酰氟缓冲罐中。

钢瓶充装前,维持氟醚计量槽液位在 50-70%之间,用氮气吹扫充装管线后,分别对钢瓶液相、气相口充装管线进行吹扫置换,置换废气进入尾气吸收塔收集。置换完毕,打开氟醚计量槽输送泵进行物料置换,置换合格后,进行自动罐装。充装过程中平衡气进入氟醚计量槽冷却收集。钢瓶200L/500L/1000L/充装时间需要大约 30-50min, 充装完毕后转移至仓库。

2) 表面活性剂制备工序

①三聚体水解工序

三聚体经过泵将料打入水解釜,并向釜中打入等量的纯水,控制反应 温度 0-30℃之间,当温度超过 30℃时,开启循环冷凝,将反应温度控制在 30℃以内,并开启真空隔膜泵控制压力为-0.1-0MPa,收集到的冷凝液打入 污水站,搅拌 4h,静置 4h,分层后三聚体酸打入水解釜进行二次水解,水 解取样合格后打入水洗釜进行洗涤。

②水洗工序

储槽三聚体酸物料经泵打入水洗釜中,等量的水打入水洗釜中,开启盐水进出口阀门,对釜内进行降温,水洗开搅拌 2h,静置 2h,关闭盐水进出口阀门,水洗期间釜内温度控制在 0-30℃。

仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度 关小,当出现分层时迅速关闭取样口侧面的水洗后计量槽的阀门,水相收 集后往至污水处理站。打开底部放料阀门将水洗后的粗三聚体酸打入计量 槽。

③精馏工序

水洗后物料由经泵打入三聚体酸精馏塔中,控制塔顶温度 90-110℃,塔釜温度控制稳定,塔顶物料经过塔顶冷凝器部分冷凝回三聚体酸精馏塔,部分产品进入三聚体酸收料槽。三聚体酸收料槽将三聚体酸打入混配釜,同时按照 1:1.2 的比例打入氨水进行混配,搅拌 2h 后打准备罐装。

按照客户要求配置一定浓度 10-30%的表面活性剂,打开混配釜出料阀门,充装前使用氮气将塑料桶进行吹扫,使用塑料桶(25L/50L/1000L)进行灌装,罐装后的物料转移至仓库。

- 3) PFPE 制备工序
- ①四聚体水解工序

4#精馏塔收料经泵打入四聚体水解釜,控制反应温度 0-30℃,当温度超过 30℃时开启冷凝降温,维持温度在 0-30℃之间,压力为常压,搅拌 4h,静置 4h,分层后油相打入粗四聚体收集槽中,含酸水相收集后打入打入污水处理站。

②水洗工序

粗四聚体收集槽中物料经泵打入四聚体酸水洗釜中,将等量的水打入水洗釜中,-10℃盐水控制温度,把釜内温度将至 0~30℃,水洗开搅拌 3h,静置 4h。分层后打开底部放料阀门将水洗后的料打入四聚体酸计量槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的水洗后计量槽的阀门。含酸水相收集后打入打入污水处理站。

③闪蒸干燥工序

水洗后计量槽按照 1-2kg/min 打入闪蒸干燥器,闪蒸干燥器内压力保持在 0.5-2bar,温度应保持在 100℃以下,除水后的含量在 1%以下,经闪蒸干燥后的料进入下一阶段处理。闪蒸干燥的气相主要为水和氟化氢,冷凝收集后送污水处理站。

④氟化工序

将氟化釜进行抽真空至-0.09MPa,采用氮气进行置换两遍及气密性检测(0.3MPa),四聚体酸经泵打入氟化釜中,温度控制在25-100℃之间,用氮气吹扫0.5h以上,将系统残留的水分去除,将釜内压力降至微正压。打开氟氮气瓶控制20-30%的氟氮气(20%, V%)以一定流速进入氟化釜底部液相物料中,直至釜内全氟聚醚油完全反应,粗全氟聚醚油放入计量槽,经泵打入碱洗釜进行碱洗。

尾气吸收单元通过三级水洗,二级碱液吸收后排入自然环境。氟化过 后的尾气经过管道打入一级喷淋水洗塔中,先打开纯水开关进行喷淋,喷 淋塔底部达到 50%液位时,关闭纯水喷淋开关,开启循环泵将塔底的喷淋液打入塔顶进行循环喷淋水洗,喷淋后的污水打入污水站,未完全被吸收的尾气从塔底进入二级水洗塔,重复操作,打开循环泵进行水循环,未被吸收的尾气从二级水洗塔塔顶进入三级水洗塔中,重复操作,开启循环泵进行循环。三级水洗塔尾气经过管道进入一级碱洗塔中,碱液槽经过泵打入一级碱洗塔中,同时开启循环泵进行循环,产生的废水排往污水站。一级碱洗塔尾气从塔顶去往二级碱洗塔,碱液从碱液槽经过泵打入二级碱洗塔中,同时开启循环泵进行循环,产生的废水排往污水站。

⑤洗涤工序

粗全氟聚醚油经泵打入碱洗釜进行碱洗,按照 1: 1.2-1.5 比例先打入 8%碱液,搅拌 2h,而后静置 2h,打开底部放料阀门将碱洗后的全氟聚醚 油打入 PFPE 碱洗收集槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的水洗后计量槽的阀门,水相打入碱洗液储槽后排往污水站废水排往污水站。

PFPE 碱洗收集槽中物料经泵打入水洗釜,搅拌 2h,静置 2h,打开底部放料阀门将水洗后的料打入 PFPE 计量槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的水洗后计量槽的阀门,水相放入 PFPE 计量槽后排往污水站废水排往污水站。水洗后经泵打入除水器进一步出水,除水器为分子吸附脱水,饱和后再生脱水,脱出的水分用于水洗,经过除水合格后打入分子蒸馏单元中进行精制。

⑥分子蒸馏工序

将物料泵入分子蒸馏设备后,关闭进气阀门,开启真空泵开关,观察真空度是否降到正常值(空载 10-100Pa 左右),保持液位在 50%,将温度升到 160-240℃之间,开启分子蒸馏单元中冷凝器,设定温度为常温,设置

刮板转速 100-200r/min 启动刮板,打开收料罐进行收料,当液位达到收料管的 1/2-2/3 时,关闭收料罐上方阀门,使体系中压力保持稳定,收完料后利用对收料罐进行抽真空至 10-100Pa,此时收料罐中真空度与蒸馏体系中真空度误差不超过 50Pa,打开收料罐上方阀门使用四氟桶(25L/50L/1000L)进行灌装外售,灌装后的产品暂存于仓库内。

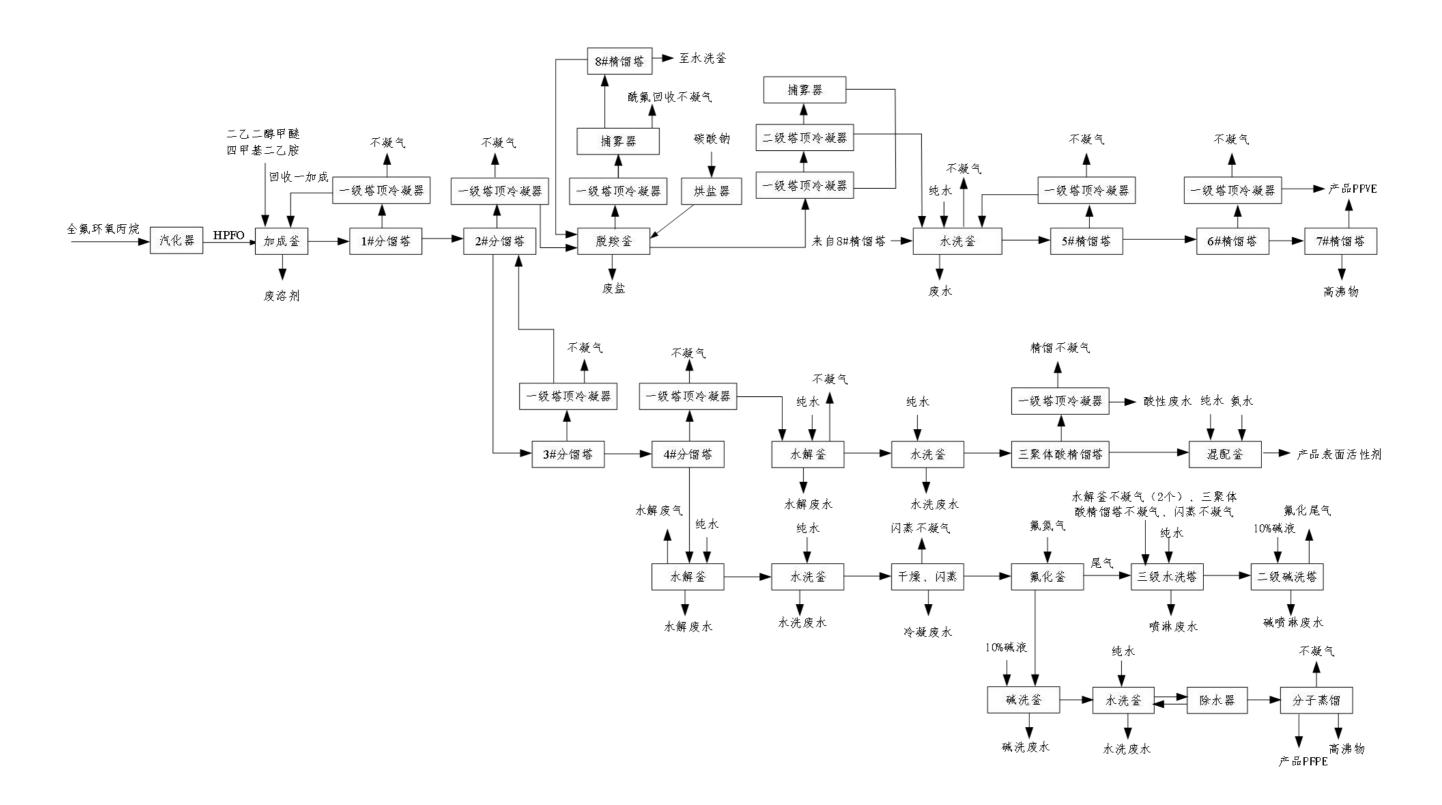


图 1 项目工艺流程图

根据项目实际建设情况,本项目中 PPVE 装置、表面活性剂制备装置与节能报告(修改版)及节能报告审查意见中列明的工艺流程一致, PFPE中装置中删除原有"闪蒸干燥工序",除水工序中删除"分子筛除水器除水工序"其他工序与节能报告(修改版)及节能报告审查意见中列明的工艺流程一致。

根据节能报告(修改版)及节能报告审查意见确定的装置用能情况为:装置主要消耗电、热量、冷量,年消耗电量为509.47万kWh,年消耗的热量(0.8MPa、245℃)为17963.46GJ,年消耗的冷量为6618.02GJ。

根据项目实际建设情况:该装置主要消耗电能、热力、冷量。根据厂区最新设备台账进行计算,本项目年消耗电量为549.85万KWh,消耗的热力为17364.25GJ,冷量消耗量为6618.02GJ。详见下表:

表 4 项目用电负荷计算表

₽ □	2n & 4 4h	装机容	工作台数/	工作容量	需用系数		. =	计算负荷		
序号	设备名称	量	建筑面积	(KW)	(K)	cosΦ	tanΦ	有功功率	无功功率	视在功率
	一、PPVE 制备									
1	反应釜	22	4	88	0.8	0.85	0.62	70.40	43.63	82.82
2	1#溶剂输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
3	2#溶剂输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
4	清液计量泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
5	加成溶剂输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
6	罐区 HFPO 输送泵	11	2	22	0.75	0.8	0.75	16.50	12.38	20.63
7	4#塔釜粗品槽输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
8	脱羧釜	30	4	120	0.8	0.85	0.62	96.00	59.50	112.94
9	二加成计量泵	0.55	3	1.65	0.75	0.8	0.75	1.24	0.93	1.55
10	水洗计量泵	2.2	2	4.4	0.75	0.8	0.75	3.30	2.48	4.13
11	水洗釜	11	2	22	0.8	0.8	0.75	17.60	13.20	22.00
12	水洗后进精馏塔泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
13	干式螺杆真空泵	5.5	4	22	0.75	0.8	0.75	16.50	12.38	20.63
14	电动葫芦	4.5	1	4.5	0.7	0.8	0.75	3.15	2.36	3.94
15	洗涤水输送泵	7.5	1	7.5	0.75	0.8	0.75	5.63	4.22	7.03
16	洗涤循环泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
17	6#塔釜溶液计量泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
18	7#塔釜出料泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
19	8#塔釜出料泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06

7#精馏塔塔釜收集槽输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
4#塔釜溶液输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
吊笼	4.5	1	4.5	0.7	0.8	0.75	3.15	2.36	3.94
罗茨鼓风机真空泵	7.5	1	7.5	0.75	0.8	0.75	5.63	4.22	7.03
罗茨鼓风机真空泵	7.5	1	7.5	0.75	0.8	0.75	5.63	4.22	7.03
导热油炉	120	2	240	0.7	0.8	0.75	168.00	126.00	210.00
导热油机组 (热油泵)	11	1	11	0.75	0.8	0.75	8.25	6.19	10.31
导热油机组 (热油泵)	11	1	11	0.75	0.8	0.75	8.25	6.19	10.31
导热油机组 (热油泵)	11	1	11	0.75	0.8	0.75	8.25	6.19	10.31
			610.95				457.2625	321.27	558.84
、含氟表面活性剂制备									
三聚体水解釜	11	2	22	0.8	0.85	0.62	17.60	10.91	20.71
三聚体酸水洗釜	5.5	1	5.5	0.8	0.85	0.62	4.40	2.73	5.18
混配釜	5.5	1	5.5	0.8	0.85	0.62	4.40	2.73	5.18
三聚体水解水输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
三聚体酸输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
三聚体水解洗输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
三聚体酸水洗输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
三聚体酸输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
三聚体酸精馏塔塔釜液输送 泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
釜液输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
氨水输送泵	3	2	6	0.75	0.8	0.75	4.50	3.38	5.63
三聚体酸混配泵	4	2	8	0.75	0.8	0.75	6.00	4.50	7.50
	4#塔釜溶泵 罗茨鼓风风机,真空泵 罗茨鼓型,型点组(((大型型型,对型型,对型型,对型型,对型型,对型型,对型型,对型型,对型型,对型型	4#塔釜溶液输送泵 2.2 吊笼 4.5 罗茨鼓风机真空泵 7.5 导热油炉 120 导热油机组 (热油泵) 11 导热油机组 (热油泵) 11 导热油机组 (热油泵) 11 导热油机组 (热油泵) 11 三聚体水解釜 5.5 混配釜 5.5 三聚体酸补送泵 2.2 三聚体酸输送泵 2.2 三聚体酸输送泵 2.2 三聚体酸精送泵 2.2 三聚体酸精馏塔塔釜液输送泵 2.2 三聚体酸精馏塔塔釜液输送泵 2.2 三聚体酸精谱送泵 2.2 三聚体酸精谱 2.2 三聚体酸精谱 2.2 三聚体酸精活泵 2.2 氨水输送泵 3	4#塔釜溶液輸送泵 2.2 1 吊笼 4.5 1 罗茨鼓风机真空泵 7.5 1 罗茨鼓风机真空泵 7.5 1 导热油炉 120 2 导热油炉 120 2 导热油机组(热油泵) 11 1 导热油机组(热油泵) 11 1 导热油机组(热油泵) 11 1 三聚体酸水洗金 5.5 1 三聚体酸水洗金 5.5 1 三聚体酸输送泵 2.2 1 三聚体酸输送泵 2.2 1 三聚体酸输送泵 2.2 1 三聚体酸精馏塔塔釜液输送 2.2 1 三聚体酸精馏塔塔釜液输送泵 2.2 1 三聚体酸精馏塔塔釜液输送泵 2.2 1 金液输送泵 2.2 1 蚕液输送泵 2.2 1 氨水输送泵 2.2 1 每水输送泵 2.2 1 每水输送泵 2.2 1 <tr< td=""><td>4#塔釜溶液輸送泵 2.2 1 2.2 吊笼 4.5 1 4.5 罗茨鼓风机真空泵 7.5 1 7.5 罗茨鼓风机真空泵 7.5 1 7.5 导热油炉 120 2 240 导热油机组 (热油泵) 11 1 11 导热油机组 (热油泵) 11 1 11 导热油机组 (热油泵) 11 1 11 专热油机组 (热油泵) 11 1 11 610.95 6 6 6 全氟表面活性剂制备 2 2 2 三聚体酸水洗釜 5.5 1 5.5 混配釜 5.5 1 5.5 三聚体酸输送泵 2.2 1 2.2 三聚体酸输送泵 2.2 1 2.2 三聚体酸精馏塔塔釜液输送泵 2.2 1 2.2 三聚体酸精链基液 2.2 1 2.2 三聚体酸精链基 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 <!--</td--><td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 吊笼 4.5 1 4.5 0.7 罗茨鼓风机真空泵 7.5 1 7.5 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 导热油炉 120 2 240 0.7 导热油机组 (热油泵) 11 1 11 0.75 导热油机组 (热油泵) 11 1 11 0.75 专热油机组 (热油泵) 11 1 11 0.75 610.95 610.95 *含氟表面活性剂制备 2 2 0.8 三聚体水解杀釜 5.5 1 5.5 0.8 三聚体酸水洗釜 5.5 1 5.5 0.8 三聚体水解杀输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵</td><td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 吊笼 4.5 1 4.5 0.7 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 导热油炉 120 2 240 0.7 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 医素油机组(热油泵) 11 1 11 0.75 0.8 医聚体水解釜 11 2 22 0.8 0.85 三聚体酸水洗釜 5.5 1 5.5 0.8 0.85 三聚体水解木输送泵 2.2 1 2.2 0.75 0.8 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 三聚体酸精馏塔等金液输送泵 2.2 1 2.2 0.75 0.8</td><td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 0.75 吊笼 4.5 1 4.5 0.7 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专来体水解着 1 2 22 0.8 0.85 0.62 三聚体胶水消益泵 2.2 1 2.2 0.75 0.8 0.75 三聚体胶输送泵 2.2 1 2.2 0.75 0.8 0.75 </td></td></tr<> <td>4# 琴姿溶液輸送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 吊笼 4.5 1 4.5 0.7 0.8 0.75 3.15 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 导热油炉 120 2 240 0.7 0.8 0.75 168.00 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 安集在面活性利制备 5.5 1 0.75 0.8 0.75 8.25 大食集面活性利制备 2 2 0.8 0.85 0.62 17.60 三聚体酸水洗釜 5.5 1 5.5 0.8 0.85 0.62 4.40 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 三聚体酸输送泵 2.2<td>4#塔奎溶液檢送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 1.24 吊笼 4.5 1 4.5 0.7 0.8 0.75 3.15 2.36 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 學热油机组 (熱油泵) 11 1 11 0.75 0.8 0.75 168.00 126.00 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专数油机组 (热油泵) 11 1 1 0.75 0.8 0.75 8.25 6.19 上级本和工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工</td></td>	4#塔釜溶液輸送泵 2.2 1 2.2 吊笼 4.5 1 4.5 罗茨鼓风机真空泵 7.5 1 7.5 罗茨鼓风机真空泵 7.5 1 7.5 导热油炉 120 2 240 导热油机组 (热油泵) 11 1 11 导热油机组 (热油泵) 11 1 11 导热油机组 (热油泵) 11 1 11 专热油机组 (热油泵) 11 1 11 610.95 6 6 6 全氟表面活性剂制备 2 2 2 三聚体酸水洗釜 5.5 1 5.5 混配釜 5.5 1 5.5 三聚体酸输送泵 2.2 1 2.2 三聚体酸输送泵 2.2 1 2.2 三聚体酸精馏塔塔釜液输送泵 2.2 1 2.2 三聚体酸精链基液 2.2 1 2.2 三聚体酸精链基 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 三聚体酸精送泵 2.2 1 2.2 </td <td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 吊笼 4.5 1 4.5 0.7 罗茨鼓风机真空泵 7.5 1 7.5 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 导热油炉 120 2 240 0.7 导热油机组 (热油泵) 11 1 11 0.75 导热油机组 (热油泵) 11 1 11 0.75 专热油机组 (热油泵) 11 1 11 0.75 610.95 610.95 *含氟表面活性剂制备 2 2 0.8 三聚体水解杀釜 5.5 1 5.5 0.8 三聚体酸水洗釜 5.5 1 5.5 0.8 三聚体水解杀输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵</td> <td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 吊笼 4.5 1 4.5 0.7 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 导热油炉 120 2 240 0.7 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 医素油机组(热油泵) 11 1 11 0.75 0.8 医聚体水解釜 11 2 22 0.8 0.85 三聚体酸水洗釜 5.5 1 5.5 0.8 0.85 三聚体水解木输送泵 2.2 1 2.2 0.75 0.8 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 三聚体酸精馏塔等金液输送泵 2.2 1 2.2 0.75 0.8</td> <td>4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 0.75 吊笼 4.5 1 4.5 0.7 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专来体水解着 1 2 22 0.8 0.85 0.62 三聚体胶水消益泵 2.2 1 2.2 0.75 0.8 0.75 三聚体胶输送泵 2.2 1 2.2 0.75 0.8 0.75 </td>	4#塔釜溶液輸送泵 2.2 1 2.2 0.75 吊笼 4.5 1 4.5 0.7 罗茨鼓风机真空泵 7.5 1 7.5 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 导热油炉 120 2 240 0.7 导热油机组 (热油泵) 11 1 11 0.75 导热油机组 (热油泵) 11 1 11 0.75 专热油机组 (热油泵) 11 1 11 0.75 610.95 610.95 *含氟表面活性剂制备 2 2 0.8 三聚体水解杀釜 5.5 1 5.5 0.8 三聚体酸水洗釜 5.5 1 5.5 0.8 三聚体水解杀输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 三聚体酸精馏塔塔金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵 2.2 1 2.2 0.75 金液输送泵	4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 吊笼 4.5 1 4.5 0.7 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 导热油炉 120 2 240 0.7 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 导热油机组(热油泵) 11 1 11 0.75 0.8 医素油机组(热油泵) 11 1 11 0.75 0.8 医聚体水解釜 11 2 22 0.8 0.85 三聚体酸水洗釜 5.5 1 5.5 0.8 0.85 三聚体水解木输送泵 2.2 1 2.2 0.75 0.8 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 三聚体酸精馏塔等金液输送泵 2.2 1 2.2 0.75 0.8	4#塔釜溶液輸送泵 2.2 1 2.2 0.75 0.8 0.75 吊笼 4.5 1 4.5 0.7 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 专来体水解着 1 2 22 0.8 0.85 0.62 三聚体胶水消益泵 2.2 1 2.2 0.75 0.8 0.75 三聚体胶输送泵 2.2 1 2.2 0.75 0.8 0.75	4# 琴姿溶液輸送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 吊笼 4.5 1 4.5 0.7 0.8 0.75 3.15 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 导热油炉 120 2 240 0.7 0.8 0.75 168.00 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 安集在面活性利制备 5.5 1 0.75 0.8 0.75 8.25 大食集面活性利制备 2 2 0.8 0.85 0.62 17.60 三聚体酸水洗釜 5.5 1 5.5 0.8 0.85 0.62 4.40 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 三聚体酸输送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 三聚体酸输送泵 2.2 <td>4#塔奎溶液檢送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 1.24 吊笼 4.5 1 4.5 0.7 0.8 0.75 3.15 2.36 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 學热油机组 (熱油泵) 11 1 11 0.75 0.8 0.75 168.00 126.00 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专数油机组 (热油泵) 11 1 1 0.75 0.8 0.75 8.25 6.19 上级本和工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工</td>	4#塔奎溶液檢送泵 2.2 1 2.2 0.75 0.8 0.75 1.65 1.24 吊笼 4.5 1 4.5 0.7 0.8 0.75 3.15 2.36 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 罗茨鼓风机真空泵 7.5 1 7.5 0.75 0.8 0.75 5.63 4.22 學热油机组 (熱油泵) 11 1 11 0.75 0.8 0.75 168.00 126.00 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 导热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专热油机组 (热油泵) 11 1 11 0.75 0.8 0.75 8.25 6.19 专数油机组 (热油泵) 11 1 1 0.75 0.8 0.75 8.25 6.19 上级本和工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工

13	氨水上料泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
小计				64.6				50.1	34.14	60.62
	三、PFPE 制备									
1	四聚体水解釜	11	2	22	0.8	0.85	0.62	17.60	10.91	20.71
2	四聚体酸水洗釜	5.5	1	5.5	0.75	0.8	0.75	4.13	3.09	5.16
3	四聚体酸水解输送泵	4	1	4	0.8	0.85	0.62	3.20	1.98	3.76
4	四聚体酸水解输送泵	4	1	4	0.75	0.8	0.75	3.00	2.25	3.75
5	四聚体酸循环泵	3	1	3	0.75	0.8	0.75	2.25	1.69	2.81
6	四聚体酸输送泵	3	2	6	0.8	0.85	0.62	4.80	2.97	5.65
7	氟化釜	11	2	22	0.75	0.8	0.75	16.50	12.38	20.63
8	氟化釜出料泵	4	1	4	0.75	0.8	0.75	3.00	2.25	3.75
9	PFPE 碱洗釜	5.5	1	5.5	0.75	0.8	0.75	4.13	3.09	5.16
10	碱洗液输送泵	4	1	4	0.75	0.8	0.75	3.00	2.25	3.75
11	粗 PFPE 循环泵	2.2	1	2.2	0.8	0.85	0.62	1.76	1.09	2.07
12	PFPE 水洗釜	11	1	11	0.75	0.8	0.75	8.25	6.19	10.31
13	PFPE 计量泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
14	分子精馏成套设备			0	0.8	0.85	0.62	0.00	0.00	0.00
15	水洗循环泵	7.5	3	22.5	0.75	0.8	0.75	16.88	12.66	21.09
16	碱液循环泵	7.5	2	15	0.7	0.8	0.75	10.50	7.88	13.13
17	碱液输送泵	2.2	1	2.2	0.75	0.8	0.75	1.65	1.24	2.06
小计				135.1				102.29	73.15	125.75
	四、公用工程									
1	热水回收泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
2	-35℃盐水管道加压泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06

500 吨/年 PPVE 项目节能验收报告

3	循环水管道加压泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
4	水碱洗口引排风机	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
5	离心泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
6	S系列耐腐蚀塑料离心泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
7	罗茨真空泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
8	罗茨真空泵	7.5	2	15	0.75	0.8	0.75	11.25	8.44	14.06
9	车间照明	8w/m2	4785	38.28	0.85	0.7	1.02	32.54	33.20	46.48
10	2#区域配电室照明	8w/m2	960	7.68	0.85	0.7	1.02	6.53	6.66	9.33
11	隔爆型轴流风机	1.1	1	1.1	0.75	0.8	0.75	0.83	0.62	1.03
12	风冷热泵单元式空调机	15	1	15	0.75	0.8	0.75	11.25	8.44	14.06
小计				1465.41				141.14	116.41	182.95
合计				2276.06				750.79	544.97	927.73
	同时系数							675.71	517.72	851.25
无功补偿容量									295.63	
补偿后合计						0.95		675.71	222.10	711.27
总负荷								675.71	222.10	711.27
拟选变压器 (负载率 34%)										2500.00

表 5 项目用电量计算表

序号	设备(设施)	有功功率 (kW)	年工作 时间(h)	电能消耗量 (万 kWh)
一、PPVE 制备				
1	反应釜	70.40	7200	50.69
2	1#溶剂输送泵	1.65	300	0.05
3	2#溶剂输送泵	1.65	300	0.05
4	清液计量泵	1.65	7200	1.19
5	加成溶剂输送泵	1.65	300	0.05
6	罐区 HFPO 输送泵	16.50	1500	2.48
7	4#塔釜粗品槽输送泵	1.65	1500	0.25
8	脱羧釜	96.00	7200	69.12
9	二加成计量泵	1.24	7200	0.89
10	水洗计量泵	3.30	7200	2.38
11	水洗釜	17.60	7200	12.67
12	水洗后进精馏塔泵	1.65	7200	1.19
13	干式螺杆真空泵	16.50	7200	11.88
14	电动葫芦	3.15	1500	0.47
15	洗涤水输送泵	5.63	7200	4.05
16	洗涤循环泵	1.65	7200	1.19
17	6#塔釜溶液计量泵	1.65	7200	1.19
18	7#塔釜出料泵	1.65	7200	1.19
19	8#塔釜出料泵	1.65	7200	1.19
20	7#精馏塔塔釜收集槽输送泵	1.65	7200	1.19
21	4#塔釜溶液输送泵	1.65	7200	1.19
22	吊笼	3.15	7200	2.27
23	罗茨鼓风机真空泵	5.63	7200	4.05
24	罗茨鼓风机真空泵	5.63	7200	4.05
25	导热油炉	168.00	7200	120.96
26	导热油机组 (热油泵)	8.25	7200	5.94
27	导热油机组 (热油泵)	8.25	7200	5.94
28	导热油机组 (热油泵)	8.25	7200	5.94
小计				313.67
二、含氟表面活性剂制备				
1	三聚体水解釜	17.60	7200	12.67
2	三聚体酸水洗釜	4.40	7200	3.17
3	混配釜	4.40	7200	3.17

4	三聚体水解水输送泵	1.65	7200	1.19
5	三聚体酸输送泵	1.65	7200	1.19
6	三聚体水解洗输送泵	1.65	7200	1.19
7	三聚体酸水洗输送泵	1.65	7200	1.19
8	三聚体酸输送泵	1.65	7200	1.19
9	三聚体酸精馏塔塔釜液输送泵	1.65	7200	1.19
10	釜液输送泵	1.65	7200	1.19
11	氨水输送泵	4.50	7200	3.24
12	三聚体酸混配泵	6.00	7200	4.32
13	氨水上料泵	1.65	7200	1.19
小计				36.07
三、PFPE 制备				
1	四聚体水解釜	17.60	7200	12.67
2	四聚体酸水洗釜	4.13	7200	2.97
3	四聚体酸水解输送泵	3.20	7200	2.30
4	四聚体酸水解输送泵	3.00	7200	2.16
5	四聚体酸循环泵	2.25	7200	1.62
6	四聚体酸输送泵	4.80	7200	3.46
7	氟化釜	16.50	7200	11.88
8	氟化釜出料泵	3.00	7200	2.16
9	PFPE 碱洗釜	4.13	7200	2.97
10	碱洗液输送泵	3.00	7200	2.16
11	粗 PFPE 循环泵	1.76	7200	1.27
12	PFPE 水洗釜	8.25	7200	5.94
13	PFPE 计量泵	1.65	7200	1.19
14	分子精馏成套设备	0.00	7200	0.00
15	水洗循环泵	16.88	7200	12.15
16	碱液循环泵	10.50	7200	7.56
17	碱液输送泵	1.65	7200	1.19
小计				73.65
四、公用工程				
1	热水回收泵	11.25	7200	8.10
2	-35℃盐水管道加压泵	11.25	7200	8.10
3	循环水管道加压泵	11.25	7200	8.10
4	水碱洗口引排风机	11.25	7200	8.10
5	离心泵	11.25	7200	8.10
6	S系列耐腐蚀塑料离心泵	11.25	7200	8.10

500 吨/年 PPVE 项目节能验收报告

7	罗茨真空泵	11.25	7200	8.10
8	罗茨真空泵	11.25	7200	8.10
9	车间照明	32.54	7200	23.43
10	2#区域配电室照明	6.53	7200	4.70
11	隔爆型轴流风机	0.83	2880	0.24
12	风冷热泵单元式空调机	11.25	3600	4.05
小计				97.22
线路损耗				26.03
变压器损耗				3.21
合计				549.85

表 6 项目蒸汽(热力)消耗一览表

序号	设备名称	设备消 耗的热 量 MJ/h	使用蒸汽参数	焓值 KJ/kg	凝结水参数	焓值 KJ/kg	焓差 KJ/kg	数量 (t/h)	年消耗 量(t/a)	折合进场 蒸汽消耗 量(t/a)	折合进厂 蒸汽热量 (GJ)	折标 煤 (tce)
	一、PPVE 制备											
1	1#分馏塔再沸器	141.62	0.8MPa、175℃	2780.06	0.8MPa、100℃	419.67	2360.39	0.06	432	407.66	1198.41	40.89
2	2#分馏塔再沸器	188.83	0.8MPa , 175℃	2780.06	0.8MPa , 100°C	419.67	2360.39	0.08	576	543.54	1597.89	54.52
3	3#分馏塔再沸器	70.81	0.8MPa , 175℃	2780.06	0.8MPa , 100°C	419.67	2360.39	0.03	210	198.17	582.56	19.88
4	4#分馏塔再沸器	165.23	0.8MPa , 175℃	2780.06	0.8MPa , 100℃	419.67	2360.39	0.07	490	462.39	1359.31	46.38
5	8#精馏馏塔再沸器	401.27	0.8MPa , 175℃	2780.06	0.8MPa , 100°C	419.67	2360.39	0.17	187	176.46	518.76	17.70
6	5#精馏馏塔再沸器	401.27	0.8MPa , 175℃	2780.06	0.8MPa , 100°C	419.67	2360.39	0.17	1224	1155.03	3395.51	115.85
7	6#精馏塔再沸器	495.68	0.8MPa、175℃	2780.06	0.8MPa、100℃	419.67	2360.39	0.21	1512	1426.80	4194.45	143.11
8	7#精馏馏塔再沸器	401.27	0.8MPa , 175℃	2780.06	0.8MPa , 100℃	419.67	2360.39	0.17	88.4	83.42	245.23	8.37
小计								0.96	4719.4	4453.45	13092.13	446.70
	二、含氟表面活性	剂制备										
9	三聚体酸精馏塔再 沸器	519.29	0.8MPa、175℃	2780.06	0.8MPa、100°C	419.67	2360.39	0.22	1540	1453.22	4272.13	145.76
小计								0.22	1540	1453.22	4272.13	145.76
合计								1.18	6259.4	5906.67	17364.25	592.47

表 7 项目冷量消耗一览表

序号	设备名称	温度 (℃)	用量(kcal/h)	运行时间(h)	Kcal/a	KJ/a	年消耗量 GJ
	一、PPVE 制备						
1	加成釜	-35℃	11572.5	7200	83322000	348785892.00	348.79
2	加成釜	-15℃	23145	7200	166644000	697571784.00	697.57
3	1#分馏塔塔顶冷凝器	-35℃	33559.88	7200	241631136	1011467935.30	1011.47
4	一级酰氟回收冷凝器	-35℃	22373.25	7200	161087400	674311856.40	674.31
5	捕雾器	-35℃	18644.37	7200	134239464	561926396.30	561.93
6	5#精馏塔塔顶冷凝器	5℃	47428.5	7200	341485200	1429457047.20	1429.46
7	6#精馏塔塔顶冷凝器	5℃	47428.5	7200	341485200	1429457047.20	1429.46
小计			204152		1469894400	6152977958.40	6152.98
	二、含氟表面活性剂制备						
8	三聚体水解釜	-15℃	7715	7200	55548000	232523928.00	232.52
小计			7715		55548000	232523928.00	232.52
	三、PFPE 制备						
9	四聚体水解釜	-15℃	7715	7200	55548000	232523928.00	232.52
小计			7715		55548000	232523928.00	232.52
合计			219582				6618.02

2.能源实际接入情况

根据节能报告(修改版)及节能报告审查意见确定的能源接入情况为: (1)供电

山东中柔新材料有限公司依托现有 1#总变配电所,新增 1 台 S20-16000KVA-35KV/10KV 的变压器,主要供本项目及后期新上项目使用,用电引自国家电网秦台 110KV 变电站,采用双回路供电,由凤凰六路经架空引入 2 条 35KV 高压电缆到总变配电所,由 35KV 降压至 10KV,经高压出线柜引 2 条 10KV 高压线进入厂区新建的 2#区域配电室,10KV 变压器降压到 0.4KV 供给低压母排,最后供给本装置的用电设备使用。

本项目新建的 2#区域配电室目前仅供三号生产装置 (500 吨/年 PPVE 项目)使用,经计算,项目建成后新增用电负荷为 983.45KVA,2#区域配电室新上的 1 台 SCB14-2000-10KV/0.4KV 变压器可以满足本项目使用,同时也为后期新上项目预留容量;2 台 SCB14-3150-10KV/0.4KV 变压器主要为后期新上项目预留容量。

根据项目的实际建设情况,项目供电方式发生调整,调整内容为:山东中柔新材料有限公司外部为双电源供电,由滨北供电公司不同支线供电,分别为110kV 秦台变电站、110kV 城北变电站,本项目用电由上述两个变电所10KV 开关室及35KV 开关室内相应间隔引出后,一路采用10KV 电力线路埋地接入厂区1#变配电所内的10KV 配电室,变压后敷设至1#变配电所内的低压配电室,以380V 供三号生产装置一二级负荷使用;一路采用35KV 电力线路埋地接入厂区35KV 配电室,变压后敷设至1#变配电所10KV 配电室,经厂区1#变配电所引出1根10kV电力电缆沿管廊架空敷设到2#配电室,变压后以380V放射式供生产使用。本项目采用一路10KV、一路35KV变10KV供电,10KV及35KV变10KV配电系统采用单母线分段运行方式,双电源分段运行,当任一供电源回路故障时,另一供电电源

回路能够保证全部一二级负荷供电,满足供电负荷要求。

依托的 1#总变配电所新增的 1 台 S20-16000KVA-35KV/10KV变压器以及新建 2#区域配电室新增的 1 台 SCB14-2000-10KV/0.4KV变压器、2 台 SCB14-3150-10KV/0.4KV变压器型号、容量发生变更,其中依托的 1#总变配电所新增的 1 台变压器由"S20-16000KVA-35KV/10KV"变更为"SCB13-16000KVA/35KV/10KV";新建 2#区域配电室新增的 1 台"SCB14-2000-10KV/0.4KV变压器"变更为"SCB14-2500-10KV/0.4KV"、2 台 SCB14-3150-10KV/0.4KV为后期新上项目预留容量的变压器暂未安装。

(2) 供蒸汽

项目所耗蒸汽由山东滨州滨北热电有限公司供应。滨北热电装机规模 3×75t/h 次高温次高压循环流化床锅炉+1×170t/h 次高温次高压煤粉+2×12MW 抽凝式汽轮机配 2×15MW 发电机+1×25MW 抽凝式汽轮机配 1×30MW 发电机。该公司外供蒸汽 320t/h, 280 万 t/a, 富余蒸汽 90t/h, 78.8 万 t/a, 供汽参数为 0.5-1.1MPa、170-300℃左右。本项目蒸汽消耗量为5906.67t/a,参数为 0.8MPa、245℃,热值为 2939.77KJ/Kg,因此可满足本项目使用。

根据项目的实际建设情况,项目蒸汽的能源供应情况与节能报告(修改版)及节能报告审查意见中列明的内容一致。

(3) 供水

本项目生产用水及生活用水均来源于秦台水库,秦台水库(库容 1400 万 m³),水源为黄河水,供水能力为 10 万 m³/d,供水范围为尚集乡、堡集镇、秦皇台乡、滨北办事处、市区东部。其中向滨北办事处驻地及滨州工业园区供水能力为 4.5 万 m³/d,目前实际供水 5 万 m³/d,该项目供水由梧桐九路自来水管线主管道引入,可以满足项目用水需要。

根据项目的实际建设情况,项目供水情况与节能报告(修改版)及节

能报告审查意见中列明的内容一致。

(4) 压缩空气供应情况

项目厂区现有 1 处空压站,位于厂区动力车间,共设置空压机 3 台,分别为 1 台 INR37K-OF 干式变频无油螺杆空压机,额定流量为 5Nm³/min,300Nm³/h; 1 台 CM37PVF 水润滑无油螺杆空压机,额定流量为 5Nm³/min,300Nm³/h (备用); 1 台 RM160n 微油螺杆空压机,额定流量为 30Nm³/min,1800Nm³/h, 主要供现有年产 1000 吨六氟环氧丙烷装置、1100 吨六氟丙酮装置、500 吨六氟异丙醇装置、100 吨表面活性剂装置及在建的 3000 吨六氟环氧丙烷装置使用,现有及在建项目用量约为 1200Nm³/h,余量约为900Nm³/h。本项目依托现有空压站中 1 台 INR37K-OF 干式变频无油螺杆空压机及 1 台 RM160n 微油螺杆空压机,为本项目提供所需仪表空气。该项目仪表空气消耗量为 40Nm³/h,288000Nm³/a,现有 3 台空压机组(其中 1 台备用)余量为 900Nm³/h,可以满足本项目使用需求。

厂区氮气消耗均采用外购液氮,经汽化后,供给各装置使用。

根据项目的实际建设情况,项目压缩空气及氮气的能源供应情况与节能报告(修改版)及节能报告审查意见中列明的内容一致。

(5) 纯水

项目纯水依托厂区动力车间内的现有的高纯水机组制备,该设备采用 反渗透工艺,设计负荷 10m³/h。主要供厂区现有年产 1000 吨六氟环氧丙烷 装置、1100 吨六氟丙酮装置、500 吨六氟异丙醇装置、100 吨表面活性剂装置及在建的 3000 吨六氟环氧丙烷装置使用,其中已建成的装置纯水用量约为 1.39m³/h,在建的装置纯水用量约为 3.28m³/h,剩余供水能力为 5.33m³/h,本项目建成后纯水需求负荷 11.847m³/d, 0.494m³/h, 可满足项目需求。

根据项目的实际建设情况,项目纯水供应情况与节能报告(修改版) 及节能报告审查意见中列明的内容一致。

(6) 冷冻系统

项目厂区现有 1 处冷冻站,位于厂区动力车间,厂区现有冷冻系统主要由-70℃冷冻水机组、-60℃冷冻水机组、-35℃冷冻水机组、-15℃冷水机组及 5℃冷水机组组成。

-35℃冷冻水机组现有 4 台,分别为 2 台 NJ25LD2 型号的冷冻水机组,制冷剂为 28.6%的氯化钙溶液,单台设备制冷量为 90 万 Kcal/h,最大流量为 60m³/h; 2 台为 GD5Z-240/1.5~1 冷冻水机组,制冷剂为 28.6%的氯化钙溶液,单台设备制冷量为 40 万 Kcal/h,最大流量为 60m³/h。

-15℃冷冻水机组现有 3 台,分别为 2 台 RWK II 40-RCABY755CG 型号的冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 35 万 Kcal/h,最大流量为 83m³/h; 1 台为 RWK II 40-RCABY755CG 冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 40.9 万 Kcal/h,最大流量为 85m³/h。

5℃冷冻水机组现有1台,型号为FCW530,制冷剂为R22,单台设备制冷量为40万Kcal/h,最大流量为80m³/h。

本项目消耗的冷冻水均依托厂区现有-35℃冷冻水机组、-15℃冷冻水机组以及5℃冷水机组供应。企业现有-35℃冷冻水装置设计冷量为80万 Kcal,现有装置冷量消耗为48万 Kcal,本项目-35℃冷冻水冷量需求为8.62万 Kcal,现有-35℃冷冻水装置可以满足本项目使用;企业现有-15℃冷冻水装置设计冷量为40.9万 Kcal,现有装置冷量消耗为28万 Kcal,本项目-15℃冷冻水冷量需求为3.86万 Kcal,现有-15℃冷冻水装置可以满足本项目使用;企业现有5℃冷冻水装置设计冷量为40万 Kcal,现有装置冷量消耗为24万 Kcal,本项目5℃冷冻水冷量需求为9.49万 Kcal,现有5℃冷冻水装置可以满足本项目使用。

根据项目实际建设情况,项目动力车间冷冻系统主要由-35℃冷冻水机组、-17℃冷水机组及5℃冷水机组组成。-70℃冷冻水机组、-60℃冷冻水

机组位于 3000 吨六氟环氧丙烷车间 (二号生产装置) 内,本项目冷冻系统 依托动力车间的冷水机组,动力车间现有冷水机组情况如下:

-35℃冷冻水机组现有 2 台,型号为 YS25MDHZA 冷冻水机组,制冷剂为 28.6%的氯化钙溶液,单台设备制冷量为 40 万 Kcal/h,最大流量为 60m³/h。-17℃冷冻水机组现有 1 台,型号为 RWK II 40-RCABY755CG 冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 40.9 万 Kcal/h,最大流量为 85m³/h。5℃冷冻水机组现有 2 台,型号均为 FCW530,制冷剂为 R22,单台设备制冷量为 40 万 Kcal/h,最大流量为 80m³/h。

现有-35℃冷冻水装置设计冷量为 80 万 Kcal, 现有装置冷量消耗为 48 万 Kcal, 本项目-35℃冷冻水冷量需求为 8.62 万 Kcal, 现有-35℃冷冻水装置可以满足本项目使用;企业现有-17℃冷冻水装置设计冷量为 40.9 万 Kcal, 现有装置冷量消耗为 28 万 Kcal, 本项目-17℃冷冻水冷量需求为 3.86 万 Kcal, 现有-17℃冷冻水装置可以满足本项目使用; 企业现有 5℃冷冻水装置设计冷量为 80 万 Kcal, 现有装置冷量消耗为 24 万 Kcal, 本项目 5℃冷冻水冷量需求为 9.49 万 Kcal, 现有 5℃冷冻水装置可以满足本项目使用。

(7) 循环水量供应情况

厂区共设置循环水站 1 处,设计循环冷却水池 1 座,容积为 920m³,凉水塔 1 座,现有循环水供应能力为 1000m³/h,主要供现有年产 1000 吨六氟环氧丙烷装置、1100 吨六氟丙酮装置、500 吨六氟异丙醇装置、100 吨表面活性剂装置及在建的 3000 吨六氟环氧丙烷装置使用,其中已建成的装置循环水用量约为 190.7m³/h,在建的装置循环水用量约为 259.3m³/h,剩余循环水供水能力为 550m³/h,本项目建成后循环水需求负荷为 100m³/h,可满足项目需求。

根据项目的实际建设情况,凉水塔数量发生变化,现有凉水塔2座,循环水水池容量及循环水循环量与节能报告(修改版)及节能报告审查意

见中列明的内容一致。

3.项目建设方案对比表

根据项目实际建设情况与节能审查意见及项目节能报告(节能审查意见报复依据版本)进行对比,项目建设方案对比表如下所示:

表 8 项目建设方案对比表

工艺方案/用 能系统(工 序/环节)名 称	节能审查方案	实际实施情况	落实情况自评
建设内容	该项目拟在山东中柔新材料有限公司现有厂区内建设,不新征土地。项目占地 840m²,总建筑面积 5745 平方米,新建生产装置一座,2#配电室一座(独立装置),该项目新增设备 259 台(套),其中包括主要耗能设备 134 台(套),项目采用加成及精馏提纯工艺,建成后年产 PPVE产品 500 吨,副产表面活性剂(三聚体)200 吨、副产 PFPE产品 500 吨。	根据项目实际建设情况,PPVE 装置(总置一套,可达到年产 PPVE 产品 500 吨,副产 PFPE 产品 500 吨,副产 PFPE 产品 500 吨,副产 PFPE 产品 500 吨,副产 PFPE 产品 500 吨,是产 是 200 吨,是 200 型,是	已落实,与节能报告(修改版)及节能报告审查意见的情况基本一致。
总平面布置 情况	山东中柔新材料有限公司厂区由中间主要道路分为南、北两部分, 拟建项目中 PPVE 装置(三号生产装置)位于道路以北西侧中部,其北 侧、东侧均为预留用地,南侧为在建 3000 吨六氟环氧丙烷项目。拟建项 目生产车间共 9 层布置,按照生产工艺流程合理布置设备。新建的 2#区 域配电室位于三号生产装置(500 吨/年 PPVE 装置)正东侧。	根据项目实际建设情况,PPVE 装置设备层发生调整,由原来的9层设备层,变更为4层局部6层、7层,其他建(构)筑物总平面布置与项目节能报告(修改版)及节能报告审查意见确定的总平面布置情况一	已落实,与节能报告(修改版)及节 能报告审查意见的 情况基本一致。

	项目新上的导热油炉位于三号生产装置内部。依托的尾气处理装置、	致。	
	污水处理站位于厂区的西南角; 依托的罐区, 位于尾气处理装置及污水	7,23	
	处理站的东北方向; 依托的动力车间(内含纯水装置、空压站、冷冻站、		
	氮气供应装置)位于罐区的正北侧;依托的循环水站位于动力车间的西		
	侧;项目依托的1#仓库、2#仓库位于污水处理站东北侧;项目依托的控		
	制室位于2#仓库的正北侧;项目依托的厂区1#总变配电室位于控制室的		
	东北角。		
	(1) 加成工序		
	六氟环氧丙烷自六氟环氧丙烷装置六氟环氧丙烷储槽, 用泵将六氟		
	环氧丙烷输送至 HFPO 计量槽, 收料液位在 50%-70%之间。		
	六氟环氧丙烷装置检修停车时, 通过罐区输送泵将六氟环氧丙烷打		
	入六氟环氧丙烷计量槽。收料完毕, 打开六氟环氧丙烷计量槽出料切断		
	阀及 HFPO 汽化器气相平衡管路,通过调节六氟环氧丙烷计量槽调节阀,		
	维持 HFPO 汽化器出口压力在 0.15-0.4MPa 之间。		
	使用桶装(200L)二乙二醇二甲醚、四甲基乙二胺,分别打入到二		
	乙二醇二甲醚溶剂计量槽、四甲基二乙胺溶剂计量槽。反应前,将二乙		
	二醇二甲醚溶剂计量槽、四甲基乙二胺计量槽内溶剂,利用重力分别加		
	入到加成釜中,搅拌均匀后将釜内抽空至-99~-95kPa,稳定一定的条件,		
	准备向加成釜内投料,在投料期间保持釜内压力小于 0.3MPa,最高不能	 根据项目实际建设情况,本项目中 PPVE	已落实,与节能报
PPVE 装置	高于 0.5MPa, 同时严格控制釜内温度在 30℃以下。在确保压力、温度的	装置与节能报告(修改版)及节能报告审	告(修改版)及节
IIVL农县	参数条件下,使用 $2\sim2.5h$ 通入 $300-340$ Kg 六氟环氧丙烷,然后搅拌 $0.5h$,	□ 《	能报告审查意见的
	静止 0.5h, 得到加成后的清液, 并从釜内放出。		情况一致。
	打开加成釜和清液槽上的气相平衡阀门, 先打开视镜上方的阀门,		
	再缓慢打开视镜下方的放料阀门, 当放入清液计量槽的重量约为 250Kg		
	左右把放料阀门关小,放慢出料速度以防止溶剂放入清液槽中。待有浑		
	浊灰色在视镜出现时迅速出料阀门。		
	(2) 分馏工序		
	分馏工序设置 1#分馏塔、2#分馏塔、3#分馏塔、4#分馏塔对反应清		
	液进行分离提纯,得到的各个加成产物用于后续产品生产。		
	①1#分馏塔加料、出料		
	把从加成釜内放出的加成清液,通过计量泵向1#分馏塔中打入80%		
	液位的加成清液,开启蒸汽调节阀,调整好开度,控制釜温在 60~90℃		
	左右,待建立回流后,先全回流 4h,控制塔顶压力 0.3~0.35MPa,待釜		

温稳定后,再慢慢采出。开启计量泵向分馏塔中加料,加料速度及采出速度控制在100~180Kg/h,塔釜组分控制在五氟丙酰氟≤0.1%,塔顶组分控制在二加成≤1%。保持塔顶、塔釜组分合格。

②2#分馏塔加料、出料

利用 1#分馏塔、2#分馏塔两塔的压力差向 2#分馏塔进料,缓慢打开 1#分馏塔向 2#分馏塔进料阀门,进料速度稳定在 100~175Kg/h。当 2#分馏塔液位到 45%~50%时,开启 2#分馏塔的蒸汽调节阀,使塔内温度控制在 78℃左右,建立回流后,全回流 4h,保持 2#分馏塔塔顶压力维持在 0.1~0.15MPa,调节回流采出,控制回流量 350~500Kg/h,塔釜液位控制在 55%~65%,塔顶顶温控制在 66~65℃,先收集过渡料,待塔顶组分全氟(2-甲基-3-氧杂己基)氟化物≥99%慢慢采出。

③3#分馏塔加料、出料

当 2#分馏塔釜二加成≤1%时,且液位高于 20%时,打开 2#分馏塔的塔釜阀门,利用压力差将物料打入 3#分馏塔塔内进行间歇精馏。当 3#分馏塔液位达到 60%时,开启 3#分馏塔的蒸汽调节阀,控制塔内温度 90~130℃左右,建立回流后全回流 4h,调节回流采出,控制塔釜液位在 45%~65%,塔顶温度控制稳定,待塔顶组分三加成≥95%慢慢采出。

④4#分馏塔加料、出料

当 3#分馏塔塔釜三加成≤1%时,且液位高于 20%时,打开 3#分馏塔的塔釜出料阀门,通过压差将物料打入 4#分馏塔塔内进行间歇精馏。当 4#分馏塔液位到 60%时,开启 4#分馏塔的蒸汽调节阀,使塔顶温度控制在 100~130℃左右,建立回流后,全回流 4h,调节回流采出,塔釜液位控制在 55%~65%,控制塔顶顶温稳定后,待塔顶组分四加成≥95%慢慢采出。当塔釜四加成≤5%时,且液位高于 20%时,塔釜温度降至 50℃以下后,将釜夜排放至 4#分馏塔釜粗品槽中。

(3) 脱羧工序

①脱附反应

将一定量的钾盐(袋装)通过自动上料装置把钾盐加入烘盐器中烘干,烘干后,向脱羧釜内加入1000Kg,在95~115℃温度条件下使用7h通入1000Kg二加成,充分反应成盐后,升高釜温150~250℃,收集裂解物料至计量槽。

在烘盐器中投入钾盐 1000Kg, 把导热油的加热温度设定在 120℃。 保持 120℃恒温烘盐 2h, 再把温度调到 200℃, 保持 200℃恒温烘盐 2h, 继续升温至 280℃以上, 恒温 8h, 向脱羧釜中加入钾盐 1000Kg。

加入钾盐后,脱羧釜开启搅拌持续 2h,搅拌期间将釜底温度缓慢升至 110~150℃,温度达到标准后,向脱羧釜内充入氮气,将脱羧釜内的压力升至 200kPa,准备投料。开启计量泵,打开计量泵进料阀门向脱羧釜中投料,投料速度为 2~3Kg/min,当釜内压力升至 450kPa 左右时,再打开脱羧釜回收,把脱羧釜内压力放空至 200~230kPa。当累积投料 50Kg左右,放空时把釜内压力放空至 200~230kPa,再向釜内充入氮气至450kPa,反复置换 2 次,把釜内生成的二氧化碳置换出来,然后开始收料。按上述操作,向脱羧釜内累积投料 200Kg 二加成。投料完毕后,继续搅拌 30min,再将温度升至 130~135℃,搅拌 2h,使反应的酰氟充分反应掉。

将冷凝器收集到的组分进行检测,当 PPVE 含量高于 2%时,将收集到的清液转入二加成计量槽,通过泵将物料打入 8#精馏塔进行 PPVE 分离,将分离得到的 PPVE 打入水洗釜中进行水洗,塔釜中的二聚体通过泵打入二加成计量槽中继续进行脱附反应。

打开放空阀门,缓慢将釜内压力缓慢放空至常压,向釜内通入高纯 氮气至釜内压 450kPa,再打开放空调节阀,将釜内压力放空至常压,关 闭放空阀门,按上述操作使用高纯氮气置换 2 次。

使用高纯氮气置换完毕后,打开脱羧釜收料阀门,当加热油机组温度升至240℃,停顿 lh 再将油温升至250℃,保持不变,当视镜口回流物料很少时再将加热油机组升高20℃,加热油机组的温度最高升温至280℃,当没物料流出,计量槽半小时电子称不变时,脱羧结束,待温度降至常温后,准备放盐,将废盐放入吨桶中进行收集,定期按照危废委外处理。

②水洗

开启水洗釜搅拌,加入一定量的纯水,开启盐水进出口阀门,把釜内温度降至 0~5°C,再向釜内加入粗醚。搅拌 2h 后,停止搅拌,并关闭盐水的进出口阀门,水洗期间釜内温度控制在 0~5°C。停止搅拌后静置 0.5h,静置期间釜内的温度控制 0~5°C。

打开底部的放料阀门将水洗后的粗醚放入计量槽中,放料量达到投料量的85%时,把放料阀门关小缓慢放料,仔细观察视镜内的物料,当出现分层后,迅速关闭取样口侧面的水洗后计量槽的阀门。

(4) 精馏工序

把水洗后的粗醚加入前馏分精馏塔中脱轻,把轻组分与氟醚分离后,将前馏分精馏塔签得到的混合物料加入正馏分精馏塔内进行脱重,通过精馏得到≥99.50%的氟醚。

开启计量泵向 5#分馏塔中打入清液至约 50%液位,缓慢打开塔釜蒸汽阀门调节阀控制温度 30~35℃左右,控制精馏速度,调节好回流采出,控制塔顶温度 15℃,回流流量 329-500Kg/h 左右,塔顶收集前馏分。

5#分馏塔釜内,轻组分≤0.01%时,利用压力差向6#精馏塔加料,加料速度为50Kg/h,当塔釜液位计到达1/2左右,开启6#精馏塔的蒸汽阀门,控制塔釜温度30~45℃,回流量为300-500Kg/h左右,采出收集PPVE成品。当釜内PPVE小于0.5%时,开启精馏塔釜底部放净阀排放残液。

6#精馏塔塔釜底残液经一段时间收集后,用泵向8#精馏塔打入精馏残液进行间歇精馏二次提纯。待塔釜液位达到80%时,开启蒸汽加热,控制塔釜温度控制塔釜温度30~45℃,待建立回流后,先全回流4h,待塔顶温稳定,塔顶组分合格后,再慢慢采出。待顶部采出消失后,关闭蒸汽加热,待塔釜温度降至常温后,打开精馏塔底部放净阀排放残液。

在二加成计量槽液位达到 60%时进行取样,当其中 PPVE 组分大于 5%时将收集液打入 7#精馏塔内进行间歇精馏。待塔釜液位达到 80%时, 开启蒸汽加热,控制塔釜温度 30~45℃,待建立回流后,先全回流 4h,待塔顶温稳定,塔顶组分合格后,再慢慢采出。待塔釜组分中 PPVE 含量<0.5%,将釜残用泵打入成盐放空缓冲罐中。

钢瓶灌装前,维持氟醚计量槽液位在50-70%之间,用氮气吹扫充装管线后,分别对钢瓶液相、气相口充装管线进行吹扫置换,置换废气进入尾气吸收塔收集。置换完毕,打开氟醚收料计量槽输送泵进行物料置换,置换合格后,进行自动灌装。灌装过程中平衡气进入氟醚计量槽冷却收集。钢瓶200L/500L/1000L/充装时间需要大约30-50min,充装完毕后转移至仓库。

表面活性剂制备装置	(1) 三聚体水解工序 三聚体进入水解釜,并向釜中打入等量的纯水,控制反应温度 15-40℃之间,当温度超过 40℃时,开启循环冷凝,将反应温度控制在 40℃以内,并开启真空隔膜泵控制压力为-0.1-0MPa,收集到的冷凝液打入污水站,搅拌 4h,静置 0.5h,分层后三聚体酸打入水解釜进行二次水解,水解取样合格后打入水洗釜进行洗涤。 (2) 水洗工序 储槽三聚体酸物料经泵打入水洗釜中,等量的水打入水洗釜中,开启盐水进出口阀门,对釜内进行降温,水洗开搅拌 4h,静置 0.5h,关闭盐水进出口阀门,对釜内进行降温,水洗开搅拌 4h,静置 0.5h,关闭盐水进出口阀门,水洗期间釜内温度控制在 0-40℃。 仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的水洗后计量槽的阀门,水相收集后往至污水处理站。打开底部放料阀门将水洗后的粗三聚体酸打入三聚体酸水洗槽。 (3) 精馏工序 水洗后物料由经泵打入三聚体酸精馏塔中,控制塔顶温度 130-150℃,塔釜温度控制稳定,塔顶物料经过塔顶冷凝器部分冷凝回三聚体酸精馏塔,部分产品进入三聚体酸计量槽。三聚体酸混配泵将三聚体酸打入混配釜,同时按照 1:2.6 的比例打入氨水进行混配,搅拌 4h 后打准备罐装。 按照客户要求配置一定浓度 10-30%的表面活性剂,打开混配釜出料阀门,灌装前使用氮气将塑料桶进行吹扫,使用塑料桶(25L/50L/1000L)进行灌装,灌装后的物料转移至仓库。	根据项目实际建设情况,本项目中表面活性剂制备装置与节能报告(修改版)及节能报告审查意见中列明的工艺流程一致。	已落实,与节能报 告(修改版)及节 能报告审查意见的 情况一致。
PFPE 制备装 置	(1) 四聚体水解工序 四聚体进入四聚体水解釜,控制反应温度 15-40℃,当温度超过 40℃ 时开启冷凝降温,维持温度在 15-40℃之间,压力为常压,搅拌 4h,静 置 0.5h,分层后油相打入粗四聚体收集槽中,含酸水相收集后打入打入 污水处理站。 (2) 水洗工序 粗四聚体收集槽中物料经泵打入四聚体酸水洗釜中,将等量的水打 入水洗釜中,循环水控制温度,把釜内温度降至 15-40℃,水洗开搅拌 4h,静置 0.5h。分层后打开底部放料阀门将水洗后的料打入四聚体酸计 量槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门	根据项目实际建设情况, PFPE 中装置中删除原有"闪蒸干燥工序",除水工序中删除"分子筛除水器除水工序"其他工序与节能报告(修改版)及节能报告审查意见中列明的工艺流程一致。	已落实,与节能报 告(修改版)及节 能报告审查意见的 情况基本一致。

开度关小,当出现分层时迅速关闭取样口侧面的四聚体酸计量槽的阀门。 含酸水相收集后打入打入污水处理站。

(3) 闪蒸干燥工序

水洗后计量槽按照 1-2Kg/min 打入闪蒸干燥器,闪蒸干燥器内压力保持在 0.5-2bar,温度应保持在 100℃以下,除水后的含量在 1%以下,经闪蒸干燥后的料进入下一阶段处理。闪蒸干燥的气相主要为水和氟化氢,冷凝收集后送污水处理站。

(4) 氟化工序

将氟化釜进行抽真空至-0.098~-0.095MPa,采用氮气进行置换两遍及气密性检测(0.3MPa),四聚体酸经泵打入氟化釜中,温度控制在 40-80℃之间,用氮气吹扫 0.5h 以上,将系统残留的水分去除,将釜内压力降至微正压。打开氟氮气瓶控制 20%的氟氮气(20%, V%)以一定流速进入氟化釜底部液相物料中,直至釜内全氟聚醚油完全反应,粗全氟聚醚油放入粗 PFPE 计量槽,经泵打入碱洗釜进行碱洗。

尾气吸收单元通过三级水洗,二级碱液吸收后排入自然环境。氟化过后的尾气经过管道打入一级喷淋水洗塔中,先打开纯水开关进行喷淋,喷淋塔底部达到 50%液位时,关闭纯水喷淋开关,开启循环泵将塔底的喷淋液打入塔顶进行循环喷淋水洗,喷淋后的污水打入污水站,未完全被吸收的尾气从塔底进入二级水洗塔,重复操作,打开循环泵进行水循环,未被吸收的尾气从二级水洗塔塔顶进入三级水洗塔中,重复操作,开启循环泵进行循环。三级水洗塔尾气经过管道进入一级碱洗塔中,碱糖径过泵打入一级碱洗塔中,同时开启循环泵进行循环,产生的废水排往污水站。一级碱洗塔中,同时开启循环泵进行循环,产生的废水排往污水站。

(5) 洗涤工序

粗全氟聚醚油经泵打入碱洗釜进行碱洗,按照 1: 1~1.2 比例先打入 10%碱液,搅拌 4h,而后静置 0.5h,打开底部放料阀门将碱洗后的全氟聚醚油打入 PFPE 碱洗收集槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的 PFPE 碱洗收集槽的阀门,水相打入碱洗液储槽后排往污水站废水排往污水站。

PFPE 碱洗收集槽中物料经泵打入水洗釜, 搅拌 4h, 静置 0.5h, 打开

底部放料阀门将水洗后的料打入 PFPE 计量槽,仔细观察视镜内的物料,当有深色物质或者乳化物质出现时阀门开度关小,当出现分层时迅速关闭取样口侧面的 PFPE 计量槽的阀门,水相放入 PFPE 水洗循环槽后排往污水站。水洗后经泵打入除水器进一步出水,除水器为分子吸附脱水,饱和后再生脱水,脱出的水分用于水洗,经过除水合格后打入分子蒸馏单元中进行精制。 (6)分子蒸馏工序

将物料泵入分子蒸馏设备后,关闭进气阀门,开启真空泵开关,观察真空度是否降到正常值(空载 10-100Pa 左右),保持液位在 50%,将温度升到 160-240℃之间,开启分子蒸馏单元中冷凝器,设定温度为常温,设置刮板转速 100-200r/min 启动刮板,打开收料罐进行收料,当液位达到收料管的 1/2-2/3 时,关闭收料罐上方阀门,使体系中压力保持稳定,收完料后利用对收料罐进行抽真空至 10-100Pa,此时收料罐中真空度与蒸馏体系中真空度误差不超过 50Pa,打开收料罐上方阀门使用四氟桶(25L/50L/1000L)进行灌装外售,灌装后的产品暂存于仓库内。

能源接入情 况 供电:山东中柔新材料有限公司依托现有 1#总变配电所,新增 1台 S20-16000KVA-35KV/10KV 的变压器,主要供本项目及后期新上项目使用,用电引自国家电网秦台 110KV 变电站,采用双回路供电,由凤凰六路经架空引入 2条 35KV 高压电缆到总变配电所,由 35KV 降压至 10KV,经高压出线柜引 2条 10KV 高压线进入厂区新建的 2#区域配电室,10KV 变压器降压到 0.4KV 供给低压母排,最后供给本装置的用电设备使用。

本项目新建的2#区域配电室目前仅供三号生产装置(500 吨/年 PPVE 项目)使用,经计算,项目建成后新增用电负荷为983.45KVA,2#区域配电室新上的1台SCB14-2000-10KV/0.4KV变压器可以满足本项目使用,同时也为后期新上项目预留容量;2台SCB14-3150-10KV/0.4KV变压器主要为后期新上项目预留容量。

根据项目的实际建设情况。项目供申 方式发生调整,调整内容为:山东中柔新 材料有限公司外部为双电源供电, 由滨北 供电公司不同支线供电,分别为110kV秦 台变电站、110kV 城北变电站, 本项目用电 由上述两个变电所10KV开关室及35KV开 关室内相应间隔引出后,一路采用 10KV 申 力线路埋地接入厂区1#变配电所内的 10KV 配电室,变压后敷设至 1#变配电所内 的低压配电室,以380V供三号4产装置一 二级负荷使用:一路采用 35KV 电力线路埋 地接入厂区 35KV 配电室, 变压后敷设至 1#变配电所 10KV 配电室, 经厂区 1#变配 电所引出 1 根 10kV 电力电缆沿管廊架空敷 设到 2#配电室, 变压后以 380V 放射式供 生产使用。本项目采用一路 10KV、一路 35KV 变 10KV 供电, 10KV 及 35KV 变 10KV 配电系统采用单母线分段运行方式,

已落实,与节能报 告(修改版)及节 能报告审查意见的 情况基本一致。

	双电源分段运行,当任一供电源回路故障时,另一供电电源回路能够保证全部一二级负荷供电,满足供电负荷要求。依托的1#总变配电所新增的1台S20-16000KVA-35KV/10KV变压器以及新建2#区域配电室新增的1台SCB14-2000-10KV/0.4KV变压器型号、容量发生变更,其中依托的1#总变配电所新增的1台变压器由"S20-16000KVA-35KV/10KV"变更为"SCB13-16000KVA/35KV/10KV";新建2#区域配电室新增的1台"SCB14-2000-10KV/0.4KV变压器"变更为"SCB14-2500-10KV/0.4KV"、2台SCB14-3150-10KV/0.4KV为后期新上项目预留容量的变压器暂未安装。	
供水:本项目生产用水及生活用水均来源于秦台水库,秦台水库(库容 1400 万 m³),水源为黄河水,供水能力为 10 万 m³/d,供水范围为尚集乡、堡集镇、秦皇台乡、滨北办事处、市区东部。其中向滨北办事处驻地及滨州工业园区供水能力为 4.5 万 m³/d,目前实际供水 5 万 m³/d,该项目供水由梧桐九路自来水管线主管道引入,可以满足项目用水需要。	根据项目的实际建设情况,项目供水情况与节能报告(修改版)及节能报告审查意见中列明的内容一致。	已落实,本项目供 水情况与节能报告 (修改版)及节能 报告审查意见的情 况一致。
供蒸气:项目所耗蒸汽由山东滨州滨北热电有限公司供应。滨北热电装机规模 3×75t/h 次高温次高压循环流化床锅炉+1×170t/h 次高温次高压煤粉+2×12MW 抽凝式汽轮机配 2×15MW 发电机+1×25MW 抽凝式汽轮机配 1×30MW 发电机。该公司外供蒸汽 320t/h, 280 万 t/a, 富余蒸汽 90t/h, 78.8 万 t/a, 供汽参数为 0.5-1.1MPa、170-300℃左右。本项目蒸汽消耗量为 6110.5t/a,参数为 0.8MPa、245℃,热值为 2939.77KJ/Kg,因此可满足本项目使用。	根据项目实际建设情况,项目供蒸气情况 与节能报告(修改版)及节能报告审查意 见中列明的供蒸汽情况一致。	已落实,本项目蒸 汽供应情况与节能 报告(修改版)及 节能报告审查意见 的情况一致。

供风:项目厂区现有1处空压站,位于厂区动力车间,共设置空压机3台,分别为1台INR37K-OF干式变频无油螺杆空压机,额定流量为5Nm³/min,300Nm³/h;1台CM37PVF水润滑无油螺杆空压机,额定流量为5Nm³/min,300Nm³/h(备用);1台RM160n微油螺杆空压机,额定流量为5Nm³/min,1800Nm3/h,主要供现有年产1000吨六氟环氧丙烷装置、1100吨六氟丙酮装置、500吨六氟异丙醇装置、100吨表面活性剂装置及在建的3000吨六氟环氧丙烷装置使用,现有及在建项目用量约为1200Nm³/h,余量约为900Nm³/h。本项目依托现有空压站中1台INR37K-OF干式变频无油螺杆空压机及1台RM160n微油螺杆空压机,为本项目提供所需仪表空气。该项目仪表空气消耗量为40Nm³/h,288000Nm³/a,现有3台空压机组(其中1台备用)余量为900Nm³/h,可以满足本项目使用需求。

厂区氮气消耗均采用外购液氮,经汽化后,供给各装置使用。

供纯水:项目纯水依托厂区动力车间内的现有的高纯水机组制备,该设备采用反渗透工艺,设计负荷 10m³/h。主要供厂区现有年产 1000 吨六氟环氧丙烷装置、1100 吨六氟丙酮装置、500 吨六氟异丙醇装置、100 吨表面活性剂装置及在建的 3000 吨六氟环氧丙烷装置使用,其中已建成的装置纯水用量约为 1.39m³/h,在建的装置纯水用量约为 3.28m³/h,剩余供水能力为 5.33m³/h,本项目建成后纯水需求负荷 11.847m³/d,0.494m³/h,可满足项目需求。

供冷:项目厂区现有 1 处冷冻站,位于厂区动力车间,厂区现有冷冻系统主要由-70℃冷冻水机组、-60℃冷冻水机组、-35℃冷冻水机组、-15℃冷水机组及 5℃冷水机组组成。

-35℃冷冻水机组现有 4 台,分别为 2 台 NJ25LD2 型号的冷冻水机组,制冷剂为 28.6%的氯化钙溶液,单台设备制冷量为 90 万 Kcal/h,最大流量为 60m3/h; 2 台为 GD5Z-240/1.5~1 冷冻水机组,制冷剂为 28.6%的氯化钙溶液,单台设备制冷量为 40 万 Kcal/h,最大流量为 60m3/h。

-15℃冷冻水机组现有 3 台,分别为 2 台 RWK II 40-RCABY755CG型号的冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 35 万 Kcal/h,最大流量为 83m3/h; 1 台为 RWK II 40-RCABY755CG冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 40.9 万 Kcal/h,最大流量为 85m3/h。

根据项目的实际建设情况,项目压缩空气及氮气的能源供应情况与节能报告 (修改版)及节能报告审查意见中列明的 内容一致。

已落实,本项 已落空气况与节况 日压缩营情况与节的 报告(修改版)意 节能报告审查。

根据项目的实际建设情况,项目纯水供应情况与节能报告(修改版)及节能报告审查意见中列明的内容一致。

已落实,本项 目纯水的供应情况 与节能报告(修改 版)及节能报告审 查意见的情况一 致。

根据项目实际建设情况,项目动力车间冷冻系统主要由-35℃冷冻水机组、-17℃冷水机组及5℃冷水机组组成。-70℃冷冻水机组、-60℃冷冻水机组位于3000吨六氟环氧丙烷车间(二号生产装置)内,本项目冷冻系统依托动力车间的冷水机组,动力车间现有冷水机组情况如下:

-35℃冷冻水机组现有 2 台, 型号为 YS25MDHZA冷冻水机组,制冷剂为 28.6% 的氯化钙溶液,单台设备制冷量为 40 万 Kcal/h,最大流量为 60m3/h。-17℃冷冻水 机组现有 1 台,型号为 RWK II 已落实,本项目冷量的供应情况与节能报告(修改版)及节能报告审查意见的情况基本一致。

5℃冷冻水机组现有 1 台, 型号为 FCW530, 制冷剂为 R22, 单台设备制冷量为 40 万 Kcal/h, 最大流量为 80m3/h。

本项目消耗的冷冻水均依托厂区现有-35℃冷冻水机组、-15℃冷冻水机组以及5℃冷水机组供应。企业现有-35℃冷冻水装置设计冷量为80万Kcal,现有装置冷量消耗为48万Kcal,本项目-35℃冷冻水冷量需求为8.62万Kcal,现有-35℃冷冻水装置可以满足本项目使用;企业现有-15℃冷冻水装置设计冷量为40.9万Kcal,现有装置冷量消耗为28万Kcal,本项目-15℃冷冻水冷量需求为3.86万Kcal,现有-15℃冷冻水装置可以满足本项目使用;企业现有5℃冷冻水装置设计冷量为40万Kcal,现有装置冷量消耗为24万Kcal,现有装置冷量消耗为24万Kcal,本项目5℃冷冻水冷量需求为9.49万Kcal,现有5℃冷冻水装置可以满足本项目使用。

用量约为 259.3m³/h, 剩余循环水供水能力为 550m³/h, 本项目建成后循

环水需求负荷为100m3/h, 可满足项目需求。

量为 80 万 Kcal, 河 Kcal,

40-RCABY755CG 冷冻水机组,制冷剂为冰河冷媒 LM-8,单台设备制冷量为 40.9 万 Kcal/h,最大流量为 85m3/h。5℃冷冻水机组现有 2 台,型号均为 FCW530,制冷剂为R22,单台设备制冷量为 40 万 Kcal/h,最大流量为 80m3/h。

现有-35℃冷冻水装置设计冷量为80万Kcal,现有装置冷量消耗为48万Kcal,本项目-35℃冷冻水冷量需求为8.62万Kcal,现有-35℃冷冻水装置可以满足本项目使用;企业现有-17℃冷冻水装置设计冷量为40.9万Kcal,现有装置冷量消耗为28万Kcal,本项目-17℃冷冻水冷量需求为3.86万Kcal,现有-17℃冷冻水装置可以满足本项目使用;企业现有5℃冷冻水装置设计冷量为80万Kcal,现有装置冷量消耗为24万Kcal,本项目5℃冷冻水冷量需求为9.49万Kcal,现有5℃冷冻水装置可以满足本项目使用。

已落实,本项目冷量的供应情况与节能报告(修改版)及节能报告审查意见的情况基本一致。

根据项目的实际建设情况,凉水塔数量发生变化,现有凉水塔2座,循环水水池容量及循环水循环量与节能报告(修改版)及节能报告审查意见中列明的内容一致。

综上所述,项目实际建设方案与节能审查意见及节能报告(节能审查 意见批复依据版本)中进行对比分析,项目实际建设的建设内容、总平面 布置、建设方案及能源接入情况基本与节能报告(修改版)及节能报告审 查中一致。

五、主要用能设备及其能效水平

根据滨州市行政审批服务局出具的关于《山东中柔新材料有限公司500吨/年PPVE项目节能报告》的审查意见,建设单位要选用高效节能设备。

对照装置实际采用的设备的供货合同、设备铭牌等资料,项目实际新上主要耗能设备134台(套)。

经对比分析,部分用能设备的型号及电机型号发生变化,能效等级均已按照审查意见进行落实。主要用能设备能效水平对比表如下所示:

表9 主要用能设备能效水平对比表

		4	· 方能审查要求				实际情况			备注
设备名称	安装地点	规格	电机型号/能效等级	数量	功率(KW)	型 号	电机型号/能效等级	数量	功率 (KW)	
一、PPVE 制备										
(一) 耗电设备										
反应釜		DN1100/1000*1600,V=1.2m ³	YBBP 系列	6	22		YBBP-132S-4	6	22	已落实
1#溶剂输送泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	2.2	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
2#溶剂输送泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	2.2	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
清液计量泵	3车间6米	2000L/H,H=60m	YBBP 系列	2	11	DPMSZABD2200/0.6- I	YBBP-100L1-4W	2	2.2	已落实
加成溶剂输送泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	4	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
罐区 HFPO 输送泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	2.2	HN40-25-E/11-2	/	2	11	已落实
4#塔釜粗品槽输送泵	3车间6米	2000L/H,H=60m	YBX4 系列, 二级能效	2	4	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
脱羧釜		型号: PZG-15W-6;电机: YBBP, 1440r/min	YBBP 系列	6	30		YBBP-280S-4	6	30	已落实
二加成计量泵	3车间0米	2000L/H,H=60m	YBBP 系列	6	6.6	DPMSXAABD515/0.6- I	YBBP-80M1-4W	4	0.55	已落实
水洗计量泵	3车间6米	2000L/H,H=60m	YBBP 系列	6	6.6	DPMSZABD2200/0.6-V	YBBP-100L1-4W	2	2.2	已落实
水洗釜		DN1100/1000*1600,V=1.4m ³	YBBP 系列	3	11		YBBP-112M-4	3	11	已落实
水洗后进精馏塔泵	3车间6米	2000L/H,H=60m	YBBP 系列	2	4	DPMSZABD2200/0.6-V	YBBP-100L1-4W	2	2.2	已落实
干式螺杆真空泵	3车间0米	2BV 系列,排气压力常压	YBBP 系列	4	11	SDP-150	YBE4-132S1-2, 二级能效	4	5.5	已落实
电动葫芦	3车间0米	载荷: 2T, 起升高度: 40m, 起升速度: 8m/min	YBX4-160M1-2, 二级能效	1	11	2t	/	1	4.5	已落实
带小车电动葫芦		载荷: 2T, 起升高度:15m: 起升速度: 8m/min,行走速度: 30m/min	YBX4-132S2-2, 二级能效	1	7.5	/	/	/	/	删除
洗涤水输送泵	3车间6米	4000L/H,H=60m	YBX4 系列,二级能效	2	4	CMB32-20-200/7.5KW-2	YBE4-132S2-2, 二级能效	2	7.5	已落实
洗涤循环泵	3车间6米	BMC40-25-125F; 6300L/H, H=20m	YBX4 系列, 二级能效	2	2.2	CQB40-25-125/2.2KW-2	YBE4-90L-2, 二级能效	2	2.2	已落实
6#塔釜溶液计量泵	3车间6米	2000L/H,H=60m	YBX4 系列,二级能效	2	2.2	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
6#塔釜收集槽输送泵		2000L/H,H=60m	YBX4 系列,二级能效	2	5.5	/	/	/	/	删除
7#塔釜出料泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	2.2	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
8#塔釜出料泵	3车间0米	2000L/H,H=60m	YBX4 系列, 二级能效	2	2.2	DPMSZAB2200/0.6- V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
7#精馏塔塔釜收集槽输送泵	3车间6米		/	/	/	DPMSZAB2200/0.6- V	YBE4-100L1-4W, 二级能效	1	2.2	验收新增
4#塔釜溶液输送泵	3车间0米		/	/	/	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	验收新增
吊笼	3车间0米					2.8 吨	/	1	4.5	验收新增
罗茨鼓风机真空泵	3车间0米					HDSR125VB	YBX3-132S2-2-TZ, 三级能效	1	7.5	验收新增
罗茨鼓风机真空泵	3车间0米					HDSR125B	YBX4-160L-4, 二级能效	1	7.5	验收新增
(二) 耗蒸汽设备										
1#/2#/3#/4#精馏塔		DN200*2500, F=7 m ²	/	4	/	DN200*2500, F=7 m ²		4		已落实
5#/6#精馏塔		DN200*2500, F=7 m ²	/	2	/	DN200*2500, F=7 m ²		2		已落实
7#精馏塔		塔径: DN200*30000; 塔釜: DN700*3000	/	1	/	塔径: DN200*30000; 塔 釜: DN700*3000		1		已落实

8#精馏塔		塔径: DN300*30000; 塔釜: DN700*3000	/	1	/	塔径: DN300*30000; 塔 釜: DN700*3000		1		已落实
		DIN/00°3000				金: DN/00*3000				
(一) 耗电设备										
三聚体水解釜		DN800/700*1000,V=0.5m ³	YBBP 系列	2	11		YBBP-132M-4	2	11	
三聚体酸水洗釜		DN800/700*1000,V=0.5m³	YBBP 系列	1	5.5		YBBP-132M-4	1	5.5	已落实
混配釜		DN1700*2000, V=5m ³	YBBP 系列	1	5.5		YBBP-132M-4	1	5.5	已落实
	3车间6米	2000L/H,H=60m	YBX4 系列,二级能效	2	4	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
三聚体酸输送泵	3车间6米	2000L/H,H=60m	YBX4 系列,二级能效	2	2.2	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
三聚体水解洗输送泵	3车间6米	2000L/H,H=60m	YBX4系列,二级能效	2	2.2	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
三聚体酸水洗输送泵	3车间6米	2000L/H,H=60m	YBX4系列,二级能效	2	4	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
三聚体酸输送泵	3车间6米	2000L/H,H=60m	YBBP 系列	2	2.2	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
三聚体酸精馏塔塔釜液输送泵	3车间0米	2000L/H,H=60m	YBX4 系列,二级能效	2	4	DPMSZAB2200/0.6- I	YBE4-100L1-4W, 二级能效	1	2.2	已落实
釜液输送泵	3车间6米	2000L/H,H=60m	YBX4 系列,二级能效	2	2.2	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
氨水输送泵	3车间0米	2000L/H,H=60m	YBBP 系列	2	2.2	JMC40-25-160-3KW-2	YBE4-100L-2, 二级能效	2	3	已落实
三聚体酸混配泵						2DPMSZABD4400/0.6- V	YBBP-112M-4W	2	4	验收新增
氨水上料泵						DPMSZAB2200/0.6- I	YBE4-100L1-4W	1	2.2	验收新增
 (二)耗蒸汽设备										
三聚体酸精馏塔		塔径: DN500*33000; 塔釜: DN700*3000	1	1	/					
三、PFPE 制备										
(一) 耗电设备										
四聚体水解釜		DN1100/1000*1600,V=1.4m ³	YBBP 系列	2	11		YBBP-132M-4	2	11	已落实
四聚体酸水洗釜		DN1100/1000*1600,V=1.4m ³	YBBP 系列	1	5.5		YBBP-132M-4	1	5.5	已落实
四聚体酸水解输送泵	3车间0米	4000L/H, H=60m	YBX4 系列,二级能效	2	4	CMB32-20-200/4KW-2	YBE4-112M-2, 二级能效	1	4	已落实
四聚体酸水解输送泵	3车间17米					CMB32-20-200/4KW-2	YBE4-112M-2, 二级能效	1	4	验收新增
四聚体酸循环泵	3车间6米	BMC40-25-160F; 6300L/H, H=30m	YBX4 系列,二级能效	2	4.4	CQB40-25-160/3KW-2	YBE4-112M-2, 二级能效	2	3	已落实
四聚体酸输送泵	3车间17米	4000L/H,H=60m	YBX4 系列,二级能效	2	4	CQB32-20-160/3KW-2	YBE4-112M-2, 二级能效	2	3	已落实
氟化釜		DN1100/1000*1600,V=1.4m ³	YBBP 系列	2	11		YBBP-160L-4	2	11	已落实
氟化釜出料泵	3车间0米	BMC40-25-125F; 6300L/H, H=20m	YBX4 系列,二级能效	2	2.2	IMD40-25-165/4KW-2	YBE4-112M-2, 二级能效	2	4	已落实
PFPE 碱洗釜	3车间0米	DN1100/1000*1600,V=1.4m ³	YBBP 系列	2	5.5		YBBP-132M-4	2	5.5	已落实
碱洗液输送泵	3车间0米	4000L/H,H=60m	YBX4 系列,二级能效	2	4	CMB32-20-200/4KW-2	YBE4-112M-2, 二级能效	2	4	已落实
粗 PFPE 循环泵		2000L/H,H=60m	YBX4 系列,二级能效	2	2.2	DPMSZAB2200/0.6-V	YBE4-100L1-4W, 二级能效	1	2.2	已落实
PFPE 水洗釜		DN1100/1000*1600,V=1.4m3	YBBP 系列	2	11		YBBP-132M-4	1	11	已落实
PFPE 计量泵		2000L/H, H=60m	YBBP 系列	2	4	DPMSZABD2200/0.6-V	YBBP-100L1-4W	1	2.2	已落实
分子精馏成套设备		处理量 70Kg/h, 冷阱面积: 30 m², 有 效蒸发面积: 15 m²。真空度 0-20Pa	/	1	7.5					删除
水洗循环泵	3车间0米	BMC50-32-250F; 10000L/H, H=50m	YBX4 系列,二级能效	6	16.5	IMD50-32-200/7.5KW-2	YBE4-132S2-2, 二级能效	6	7.5	已落实
碱液循环泵	3车间0米	BMC50-32-200F; 10000L/H, H=50m	YBX4系列,二级能效	4	11	IMD50-32-200/7.5KW-2	YBE4-132S2-2, 二级能效	4	7.5	已落实

碱液输送泵	3车间0米	BMC50-32-125F; 10000L/H, H=20m	YBX4 系列,二级能	效 2	2.2	CQB50-32-125/2.2KW-2	YBE4-90L-2, 二级能效	2	2.2	已落实
(二) 耗蒸汽设备										
闪蒸干燥装置		主机内径 300mm,蒸发水量 20-50kg/h, 处理风量 600-1500m³/h		1						删除
四、公用工程										
(一) 耗电设备										
导热油炉		YWDR 型导热油炉,额定功率 120KW, 效率 97%		3	120		YBE4-160M1-2, 二级能效	3	120	已落实
导热油机组 (热油泵)						100-65-170	YBE4-160M1-2, 二级能效	1	11	验收新增
导热油机组 (热油泵)						100-65-170	YBE4-160M1-2, 二级能效	1	11	验收新增
导热油机组 (热油泵)						100-65-170	YBE4-160M1-2, 二级能效	1	11	验收新增
热水回收泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
-35℃盐水管道加压泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
循环水管道加压泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
水碱洗口引排风机	3车间0米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
离心泵	3车间0米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
S系列耐腐蚀塑料离心泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
罗茨真空泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
罗茨真空泵	3 车间 0 米					50YW20-40-7.5KW	YBE4-132S2-2, 二级能效	2	7.5	验收新增
变压器		1 台 S20-16000KVA-35KV/10KV; 1 台 SCB14-2000-10KV/0.4KV; 2 台 SCB14-3150-10KV/0.4KV		4			1台 SCB13-16000KVA-35KV/10KV; 1台 SCB14-2500-10KV/0.4KV;	2		已落实
隔爆型轴流风机	3车间6米	BT35-7.1, 配套电机型号 YBX4 系列	YBX4 系列, 二级能	效 1	1.1	GB-80	YBBP80M1-4	5	0.55	
风冷热泵单元式空调机		SKFZ-046RD2B1-A0R090D025		1	15			1	15	
				134				134		

备注: 删除: 为原节能报告中列明的设备,对照企业设备台账/现场核对不存在的设备;

已落实: 为原节能报告与企业设备台账相一致的设备。

验收新增: 为节能报告中未体现, 查找设备台账后补充的设备

根据以上对比分析,项目于2024年7月31日取得滨州市行政审批服务局出具的《关于山东中柔新材料有限公司500吨/年PPVE项目节能报告的审查意见》,根据节能报告编制时确定的主要设备能效等级为依据,本项目电动机型号主要包括YBBP、YBE4、YBX4等系列电机。其中YBE4、YBX4、系列电机按照《电动机能效限定值及能效等级》(GB18613-2020)的标准,均达到了二级能效。

仅有1台电动机,型号为YBX3-132S2-2-TZ,电机能效等级为三级,建议建设单位及时更换。

YBBP系列电机属于变频防爆电机,不属于《电动机能效限定值及等效等级》(GB18613-2020)评价范围内的额定电压1000V以下,50Hz三相交流电源供电,额定功率在120W~1000kW范围内,极数为2极、4极、6极和8极,单速封闭自扇冷式、N设计、连续工作制的一般用途电动机或一般用途防爆电动机。不属于690V及以下的电压和50Hz交流电源供电的电容起动异步电动机(120W~3700W)、电容运转异步电动机(120W~2200W)、双值电容异步电动机(250W~3700W)等一般用途电动机的范围。且目前尚未出台其他变频防爆电机的标准,故不对该型号电机进行分析。

六、节能措施

以节能审查阶段提出的节能措施和建议为依据,对照本装置的项目设计、施工和竣工技术资料,装置的各项节能措施落实情况如下表所示:

表10 节能措施落实情况对比表

内容	序号	节能审查要求	实际实施情况	落实情况 自评
	1	回收蒸汽凝结水余热, 用于 HFPO 汽化使用	根据项目实际情况,该项 节能措施与节能报告(修改 版)及节能报告审查意见的情况一致。	已落实
节能技术 措施	2	回收蒸汽凝结水余热, 用于管线保温使用	根据项目实际情况,该项 节能措施与节能报告(修改 版)及节能报告审查意见的情 况一致。	已落实
	3	回收 1~8#精馏塔再沸器、三聚体酸精馏塔再沸器及闪蒸干燥等设备设施产生的凝结水 6151.63t/a, 用于循环水补水。	项目回收凝结水量为 5611.34t/a,用于循环水补水。	巳落实
	1	制定《能源节约管理制度》加强项目用能管理。	已制定《能源节约管理制度》,加强了对能源的管理。	已落实
节能管理	2	建立节能组织及管理机构企业成立节能领导小组,在企业生产管理部门设立能源管理机构,全面管理节能日常工作,并实施目标管理责任制和考核评价制度。	已成立节能领导小组,设 立了能源管理机构,全面实施 了节能管理的日常工作。	已落实
措施	3	加强能源计量管理,根据《计量法》和《用能单位能源计量器具配备和管理通则》(GB/17167-2006)的规定及项目用能情况,进行能源计量装置的配备和管理。	能源计量器具配备完整。	巳落实
	4	加强能源管理与监测, 加强节能宣传与培训	进一步加强了能源的管理与监测,强化了节能宣传	已落实

经分析,装置在余热综合利用、水的综合利用等方面均已按照节能审查意见进行落实。在节能管理措施方面,从制度的制定、限额标准的制定及能源管理与监测方面均按照节能审查意见进行落实。

七、计量器具

以《用能单位能源计量器具配备和管理通则》(GB17167)和行业相关计量标准为依据,对照项目能源计量器具的配备情况,装置的计量器具配备落实情况如下表所示:

表11 计量器具配备落实情况对比表

			至/标准要求	配备率	,	实际配备率	ξ.	
能源种类		用能单位	主要次 级用能 单位	主要用能设备	用能单位	主要次 级用能 单位	主要 用能 单位	落实情况自评
ŧ	旦力	1	1	3	1	1	3	根据实际生产装置现状,项目引入2条独立电源,至总配电量1台,2#区域配电量上1台,2#区域配电上1台的设备共3台变压器具1台设路的设备共3台(套),因此配备与(套),因此配数超台(套),因此配数超台(套),因此配数超台,数量器具3台,如是器具3台,如是器具3台,和设备,有限备标准进行配备。
气态 能源	蒸汽	/	1	/		1		据装置实际生产现状, 在 PPVE 生产装置(三号 生产车间)设置二级计量,配置二级计量1台, 无需设置三级计量。
载能 工质	水	/	1	/		1		据装置实际生产现状, 在 PPVE 生产装置(三号 生产车间)设置二级计量,配置二级计量1台, 无需设置三级计量。
	仪表空气	/	1	/		1		据装置实际生产现状, 在 PPVE 生产装置(三号 生产车间)设置二级计

								量,配置二级计量1台, 无需设置三级计量。
	冷量	/	3	/		3		据装置实际生产现状, 在 PPVE 生产装置(三号 生产车间)设置二级计 量,配置二级计量3台, 无需设置三级计量。
合计		1	7	3	1	7	3	

根据项目实际建设情况,能源计量器具配备与节能报告(修改版)及节能报告审查意见确定的能源计量器具配备方案一致。

八、项目年综合能源消费量

依据项目实际设计建设情况,项目能源消耗品种为电、热力(0.8MPa、245℃)、冷量,经计算,本项目年消耗电量为549.85万kWh,消耗的热力为17364.25GJ、年耗冷量为6618.02GJ。项目能源消费量情况如下表所示

表12 项目能源消费量情况表

名称	能源消费种类	计量单位	折标系数	节能管	审查批复值	实际消费量		
	化燃用预件失	1 里午位	11111111111111111111111111111111111111	实物量	折标准煤 (tce)	实物量	折标准煤 (tce)	
	电	万 KWh	0.1229kgce/KWh	509.47	626.14	549.85	675.77	
输入	热力(0.8MPa、245℃)	GJ	0.03412kgce/MJ	17963.46	612.91	17364.25	592.47	
	冷量	GJ	0.03412kgce/MJ	6618.02	225.81	6618.02	225.81	
综合能源消费量	/	tce		当量值	1464.86	当量值	1494.04	

经分析,项目节能审查阶段能源消耗品种为电、热力(0.8MPa、245℃)、冷量,项目实际生产阶段,主要消耗能源品种为电、热力(0.8MPa、245℃)、冷量。与节能审查阶段对比,装置能源消费总量由节能审查阶段的1464.86tce上升至1494.04tce,增加了29.18tce,提高了1.99%,未超过节能审查意见批复的10%。

九、项目能效水平

通过查阅相关资料悉知, PPVE、表面活性剂及PFPE等产品现未有相关的单位产品能源消耗限额。因此,本项目单位产品综合能耗分析采用与国内同行业对比分析的方式进行评价。

表 13 产品综合能耗消耗表

序号	装置	耗电量 (万 kWh)	折标煤 1 (tce)	热量 (GJ)	折标煤 2 (tce)	纯水消耗 量 (m3/a)	折标煤 3 (tce)	循环水循 环量 (m3/a)	折标煤 4 (tce)	冷冻水 (GJ)	折标煤 5 (tce)	仪表空气 (Nm3/a)	折标煤 6 (tce)	氮气 (Nm3/a)	折标煤 7 (tce)	合计
1	一、PPVE 制备	313.67	385.50	13092.13	446.71	901.2	0.44	616824	52.86	6152.98	229.28	213768	11.54	64080	25.63	1151.96
2	二、含氟表面活性剂制备	36.07	44.33	4272.13	145.76	970.11	0.47	103176	8.84	232.52	6.65	25776	1.39	10080	4.03	211.47
3	三、PFPE 制备	73.65	90.51	0.00	20.44	1317.92	0.64	0	0	232.52	6.65	48456	2.62	10080	4.03	124.89
合计		423.39	520.35	17364.25	612.91	3189.23	1.55	720000.00	61.70	6618.02	242.58	288000.00	15.55	84240.00	33.69	1488.33

本项目建成后年产PPVE产品500吨、表面活性剂(以三聚体计)200吨、PFPE产品500吨。根据运行设备的运行情况,项目单位产品综合能耗分别为PPVE装置2.27tce/t、表面活性剂装置1.03tce/t、PFPE装置为0.33tce/t。综合单位产品综合能耗如表14所示。

序号	装置	能源消费量(tce/a)	产量(t/a)	单位产品综合能 耗(tce/t)
1	PPVE 制备	1151.96	500.00	2.30
2	含氟表面活性剂制备	211.47	200.00	1.06
3	PFPE 制备	124.89	500.00	0.25
	合计	1488.33		

表 14 单位产品综合能耗一览表

本项目与三明市海斯福化工有限责任公司现有年产300吨全氟正丙基乙烯基醚装置(PPVE装置)、年产1000吨全氟聚醚装置(PFPE装置)、年产50吨表面活性剂装置进行对比,300吨全氟正丙基乙烯基醚装置(PPVE装置)单位产品综合能耗为2.6tce/t;1000吨全氟聚醚装置(PFPE装置)单位产品综合能耗为0.5tce/t;50吨表面活性剂装置单位产品综合能耗为1.2tce/t。

序号	产品	单位	本项目	海斯福	备注
1	PPVE 制备	tce/t	2.30	2.6	
2	含氟表面活性剂制备	tce/t	1.06	1.2	
3	PFPE 制备	tce/t	0.25	0.5	

表 15 单位产品综合能耗对比表

本项目单位产品能耗低于同行业的单位产品能耗, 优于同行业水平。

十、项目碳排放评价

根据本项目实际建设情况,本项目不存在燃料燃烧产生的二氧化碳排放量、工业生产过程产生的各种温室气体排放量,同时项目无回收或外供二氧化碳量及电力。项目充分考虑酰氟回收、PPVE 收料以及氟化反应等废气中产生的 CO_2 排放量,因此本项目计算 $E_{购入费}$ 以及废气中产生的

CO₂排放量。

E 购入电 = AD 购入电 × EF 电

其中:

 E_{MA} : 净购入使用的电力对应生产活动的 CO_2 排放量,单位为 (tCO_2)

AD #1: 核算期内净购入的电力,单位为(MWh)

EF #M: 电力的 CO₂ 的排放因子,单位为(tCO₂/MWh)

本项目年耗电量为 509.47 万 KWh, 5094.7MWh。

冷量消耗量为 6618.02GJ, 年标准煤消耗量为 225.81tce, 折合耗电量约为 183.73 万 KWh

则本项目总耗电量为 549.85 万 KWh+183.73 万 KWh=733.58 万 KWh, 7335.8MWh

电力排放因子依据生态环境部和国家统计局于2024年12月26日联合印发《关于发布2022年电力二氧化碳排放因子的公告》(公告2024年第12号)中附件1表3的山东省电网平均排放因子0.6410tCO2/MWh。

 $E_{\text{Mah}} = 7335.8 \text{MWh} \times 0.6410 \text{tCO}_2/\text{MWh}$

=4702.25tCO₂

本项目年耗热量 17364.25GJ (0.8MPa、245℃)。

E wλ ** = AD wλ ** × EF **

其中:

 $E_{m\lambda k}$: 购入热力所产生的二氧化碳排放量,单位为(tCO₂)

AD màn: 核算期内购入的热力,单位为(GJ)

EF *: 热力消费的排放因子,单位为(tCO₂/GJ)

本项目热力消费排放因子采用标准推荐值 0.11tCO₂/GJ。

E $_{\text{Ma} \lambda \text{ th}} = 17364.25 \text{GJ} \times 0.11 \text{tCO}_2/\text{GJ}$

=1910.07tCO₂

依据项目物料平衡,已知项目酰氟回收不凝气中的 CO2 排放量为

83.18tCO₂; PPVE 收料不凝气中的 CO₂ 排放量为 83.18tCO₂; 氟化反应有机 废气 CO₂ 排放量为 34.34tCO₂。

经计算, 废气排放增加的碳排放量=83.18+83.18+34.34=200.7tCO₂

E=E ¸¸¸, +E ¸¸, +废气排放增加的碳排放量

=4702.25+1910.07+200.7

 $=6813.02tCO_2$

经计算,本项目二氧化碳排放总量为 6813.02tCO₂,由于项目所在地并 未明确降碳目标任务,因此无法分析对所在地完成降碳目标任务的影响。

项目实际建设中已落实以下减碳措施:

(1) 提高能源利用效率

企业通常需要大量能源来驱动设备和参与工艺流程。提高能源利用效率是减少碳排放的重要手段之一。本项目通过优化设备设计、改进工艺流程、提高设备运行效率等方式来降低能源消耗。

(2) 加强能源的回收利用

项目的废物处理和资源回收也与碳排放密切相关。合理处理废物可以降低环境污染和碳排放。本项目充分回收锅炉烟气热量,减少能源的消耗降低碳排。

(3) 合理布置照面

按照《建筑照明设计标准》(GB50034-2024)使用要求,合理设计及考虑各个场所的照度值及照明功率密度值。装置区道路照明电源在保证合理电压降情况下实行多点供电,并统一控制开闭。尽量采用天然采光,减少人工照明。

按照项目实际建设情况,项目所有碳排放量来自化石燃料燃烧、电量消耗及蒸汽消耗,由于项目节能报告及节能审查阶段未对项目碳排放情况进行计算与说明在本次核查中补充了该章节内容。

十一、结论和问题

1.问题及建议

通过将装置实际生产情况与节能审查意见及节能报告进行对比分析发现装置目前存在以下问题:

- (1) PPVE装置占地面积与建筑面积发生变化,根据实际生产需求, PPVE装置(三号生产装置)主体由七层变更为五层局部八层。
- (2)设备数量虽未发生变化,但部分原计划新上的备用设备未安装, 部分功率较小的设备未进行统计,设备变动对总体能耗的影响较小。
- (3)设备电机中现有1台电动机型号为YBX3-132S2-2-TZ, 电机能效等级为三级,建议建设单位及时更换。

2.结论

根据《固定资产投资项目节能审查办法》(中华人民共和国国家发展和改革委员会令第2号)、《山东省固定资产投资项目节能审查实施办法》(鲁发改环资〔2023〕461号),通过节能审查的固定资产投资项目,建设地点、建设内容、建设规模、能效和碳排放水平等发生重大变动的,或年实际综合能源消费量、碳排放量超过节能审查批复水平10%及以上的,建设单位应向原节能审查机关提交变更申请。

本项目500吨/年PPVE项目建设地点、建设内容、建设规模、能效水平等均未发生重大变动,项目年总综合能源消费量未超过节能审查批复水平的10%,因此,500吨/年PPVE项目节能验收合格。

附件1项目备案文件

山东省建设项目备案证明

1					
单位名称	山东中柔新材料有限公司				
基本情况法定代表人	武海朋	法人证照号码	91371602MA3UE3PP8E		
项目代码	2310-371600-04-01-748782				
项目名称	500吨/年PPVE项目				
建设地点	滨州市				
建设规模和内容	500吨/年PPVE项目占地1.26亩,总建筑面积5745平方米,建设生产装置一座,2#配电室一座(独立装置),生产装置内建设PPVE生产线一条,新上静动设备设备250余台,采用加成及精馏提纯工艺,建成后年产PPVE产品500吨,副产表面活性剂(三聚体)200吨、副产PFPE产品500吨。				
建设地点详细地址	山东省滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉路口西北角				
总投资	7000万元	建设起止年限	2024年至2024年		
郭勇	联系电话	13646441711			
	法定代表人 项目代码 项目名称 建设地点 建设规模和内容 建设地点详细 地址	法定代表人 武海朋 项目代码 2310-371600-04-01 项目名称 500吨/年PPVE项目 建设地点 滨州市 建设规模和内容 500吨/年PPVE项目占产装置一座,2#配电3生产线一条,新上静云艺,建成后年产PPVE,吨、副产PFPE产品500建设地点详细地址 500万元	法定代表人 武海朋 法人证照号码 项目代码 2310-371600-04-01-748782 项目名称 500吨/年PPVE项目 建设地点 滨州市 建设规模和内容 500吨/年PPVE项目占地1.26亩,总建筑产装置一座,2#配电室一座(独立装置生产线一条,新上静动设备设备250余约克,建成后年产PPVE产品500吨,副产吨、副产PFPE产品500吨。副产中、副产PFPE产品500吨。 建设地点详细 地址 西北角		

承诺:

<u>山东中柔新材料有限公司</u>(单位)承诺所填写各项内容真实、准确、完整,建设项目符合相关产业政策规定。如存在弄虚作假情况及由此导致的一切后果由本单位承担全部责任。

法定代表人或项目负责人签字://

备案时间: 2023-10-13

附件2节能审查意见

滨州市行政审批服务局

滨审批五(2024)37号

滨州市行政审批服务局 关于山东中柔新材料有限公司 500 吨/年 PPVE 项目节能报告的审查意见

山东中柔新材料有限公司:

你单位报送的《关于山东中柔新材料有限公司 500 吨/年PPVE 项目节能审查的请示》(中柔发〔2024〕第 20 号)、山东省建鲁智华工程咨询研究院有限公司(由滨州市发展和改革委员会委托)评审后出具的《山东中柔新材料有限公司 500 吨/年 PPVE 项目节能报告评审意见》(鲁智咨评字〔2024〕第 57 号)等收悉。经审查,具体意见如下:

- 一、该项目为非耗煤项目,原则同意该项目节能报告。
- 二、该项目建成运营期年综合能源消费量当量值 1464.86 吨

标准煤、等价值 2442.20 吨标准煤,主要能源种类为电、热力(0.8MPa、245℃)、冷量(当量值)、-35℃冷量(等价值)、-15℃冷量(等价值)、5℃冷量(等价值)。

三、建设单位要严格落实节能报告各项措施,改进和加强以下节能工作:

- (一)在项目设计阶段,要进一步优化主要用能工艺和工序的设计,选用节能高效的用能设备,确保达到相关行业节能设计规范、标准要求,提高项目能效水平。
- (二)项目建成投产后,要切实加强节能管理。根据《能源管理体系要求》、《工业企业能源管理导则》等建立完善能源监督管理体系;根据《用能单位能源计量器具配备和管理通则》等标准规范,严格配备能源计量器具。
- (三)在项目投产运营过程中,要积极开展各项能源指标与 国内外先进水平的比较分析,不断提高能源利用效率。

四、建设单位要严格落实《山东省发展和改革委员会关于印发《山东省固定资产投资项目节能审查实施办法》的通知》(鲁发改环资〔2023〕461号)等政策规定,项目投入生产、使用前,建设单位应组织对项目节能报告中的生产工艺、用能设备、节能技术采用情况以及节能审查意见落实情况进行验收,并编制节能验收报告报我局和市发改委存档备查。

五、本节能审查意见自印发之日起2年内有效,逾期未开工建设或建成时间超过节能报告中预计建成时间(2024年12月)2年以上应重新进行节能审查;若项目建设地点、建设内容、建设

规模、能效水平等发生重大变动的,或年实际综合能源消费量超过节能审查批复水平10%及以上的,建设单位应向我局提交变更申请。

抄送: 滨州市发展和改革委员会, 滨城区发展和改革局, 滨城区行政审批服务局。

滨州市行政审批服务局审批五科

2024年7月31日印发

附件3环评批复

滨州市行政审批服务局

滨审批四 [2024] 380500040 号

关于山东中柔新材料有限公司年产 500 吨/年 PPVE 项目环境影响报告书的批复

山东中柔新材料有限公司:

你公司《山东中柔新材料有限公司年产 500 吨/年 PPVE 项目环境影响报告书》收悉。经局长办公会研究通过,批复如下:

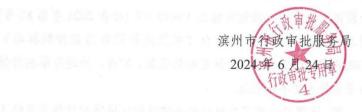
- 一、山东中柔新材料有限公司年产 500 吨/年 PPVE 项目位于 滨州滨城化工产业园。项目已取得山东省建设项目备案证明,项目代码: 2310-371600-04-01-748782。建设规模和内容: 建设生产装置一座,生产装置内建设 PPVE 生产线一条,新上静动设备设备 150 余台,采用加成及精馏提纯工艺,建成后年产 PPVE 产品 500 吨,副产表面活性剂(三聚体)200 吨、副产 PFPE 产品 500 吨。
- 二、根据山东永润环保咨询有限公司对该项目开展环境影响评价的结论、专家评审意见和复审意见,在全面落实报告书提出的各项污染防治措施和风险防范措施后,我局原则同意该项目环境影响报告书中所列建设项目的性质、规模、地点、工艺以及拟采取的环境保护措施。

三、在项目建设与生产管理中, 你公司应认真对照并落实报

告书提出的各项环保对策措施,并着重做好以下工作:

- (一)大气污染防治。进一步优化生产工艺,优选大气污染物处理设备,加强精细化管理,采取有效防控措施。根据《区域性大气污染物综合排放标准》(DB37/2376-2019)《石油化学工业污染物排放标准》(GB31571-2015)《危险废物焚烧污染控制标准》(GB18484-2020)《挥发性有机物排放标准第6部分:有机化工行业》(DB37/2801.6-2018)等要求,控制各类废气的产生,并确保各类废气的收集、处理和达标排放,各类废气排气筒应满足监测采样条件。
- (二)水污染防治。项目应按照"清污分流、分类收集、分质 处理"的原则,配套相应的废水收集及处理设施。拟建项目废水 主要包括高盐废水、酸性废水、循环冷却排水、纯水系统排水、 生活污水。高盐废水和酸性废水应预处理后与生活污水一起进综 合处理,处理达标后与循环冷却排水、纯水系统排水一起经北城 污水处理厂进一步处理,达标后排入秦台河。
- (三)地下水和土壤污染防治。按照"源头控制、分区防治、污染监控、应急响应"的原则进行地下水污染防治。对重点污染防治区、一般污染防治区等采取分区防渗措施。加强防渗设施的日常维护,对出现破损的防渗设施应及时修复和加固,确保防渗设施牢固安全。
- (四)噪声污染防治。落实噪声源治理措施,有效降低噪声 强度。采取低噪声设备、基础减震、隔声、消声等措施,确保厂 界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3

类标准要求。项目投产后,加强厂界及主要噪声设备的监测管理 工作,以便发现问题及时解决。


(五)固体废物防治。严格落实固体废物分类处置和综合利用措施,做到妥善处置。本工程一般固废暂存应符合《中华人民共和国固体废物污染环境防治法》相关要求,同时满足《一般工业固体废物管理台账制定指南(试行)》(公告 2021 年第82号)要求。危险废物贮存应符合《危险废物贮存污染控制标准》(GB18597-2023)要求。固体废物的收集、贮存、外运应落实好报告书中提出的各项措施。

四、该项目必须严格执行配套建设的环境保护设施与主体工程同时设计、同时施工、同时投入使用的"三同时"制度。项目竣工后,依据《固定污染源排污许可分类管理名录(2019年版)》申领排污许可证及进行建设项目竣工环境保护验收,经验收合格后方可投入正式生产。

五、该项目的环境影响报告书批准后,如项目的性质、规模、 地点、采用的生产工艺或者防治污染的措施等发生重大变动,你 公司应当重新报批建设项目的环境影响评价文件,经批准后方可 实施。

六、你公司应在收到本批复后 10 个工作日内,将批复后的 《报告书》送至滨州市生态环境局并按规定接受监督检查。

七、按照相关要求,你公司应对环保设施和项目开展安全风 险辨识管理、健全内部管理责任制度、严格依据标准规范建设环 保设施和项目。 八、本批复是对该项目环境影响报告书的批复意见。项目涉及的经济综合管理、规划、建设、土地等其他事项,遵照有关部门的要求。

滨州市行政审批服务局审批四科

2024 年6月24日印发

附件4安全审查意见书

危险化学品建设项目安全审查意见书

滨应急危化项目(条件)审字[2024]16号

山东中柔新材料有限公司:

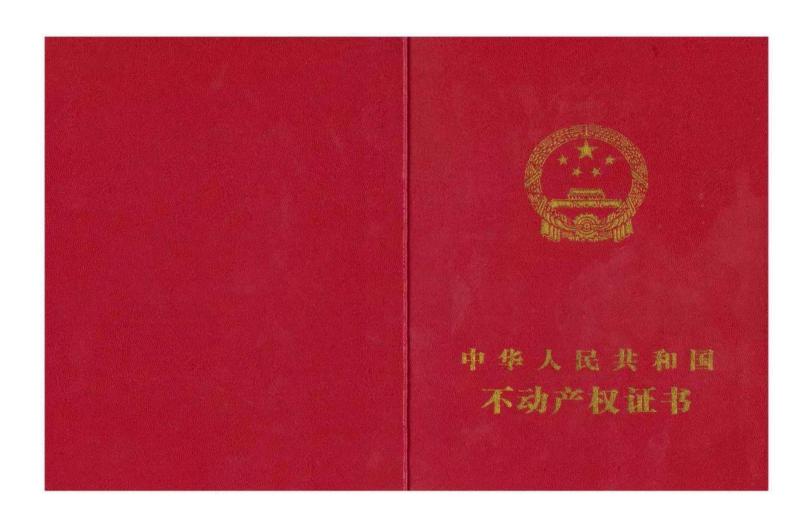
根据《危险化学品建设项目安全监督管理办法》(国家安监总局令第 45 号)和《山东省〈危险化学品建设项目安全监督管理办法〉实施细则》(鲁安监发〔2018〕17 号)的规定,你单位提出的 500 吨/年 PPVE 项目安全条件审查申请受理后,经组织专家对该建设项目安全条件审查申请文件、资料进行审查,主要建设内容为:500 吨/年 PPVE 项目生产装置、2#配电室及依托的公辅设施。主要原料为:六氟环氧丙烷(HFPO)、二乙二醇二甲醚、N,N,N',N'-四甲基乙二胺、碳酸钾、氟氮混合气(20%氟气 V%)、氨溶液(25%)。主要产品为:PPVE(全氟正丙基乙烯基醚)。我局同意该项目通过安全条件审查。

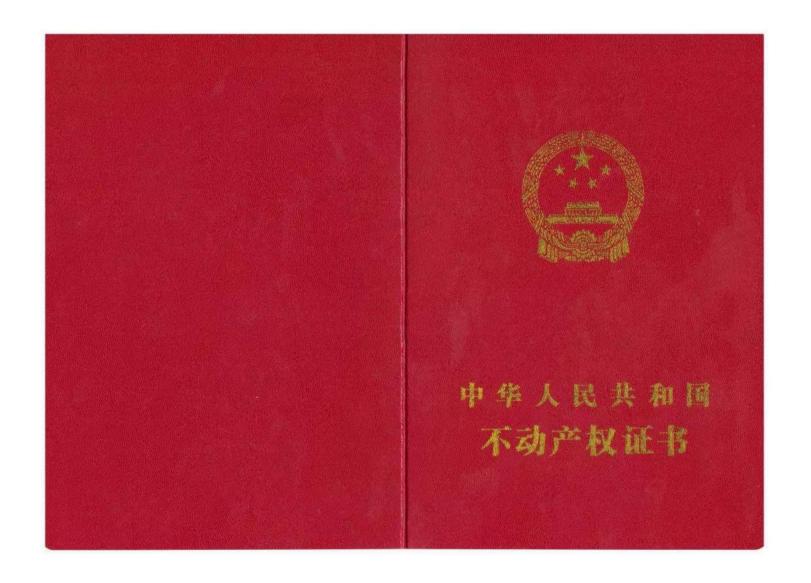
(本意见书自颁发之日起有效期为两年,有效期满未开工建设的,本意见书自动失效。)

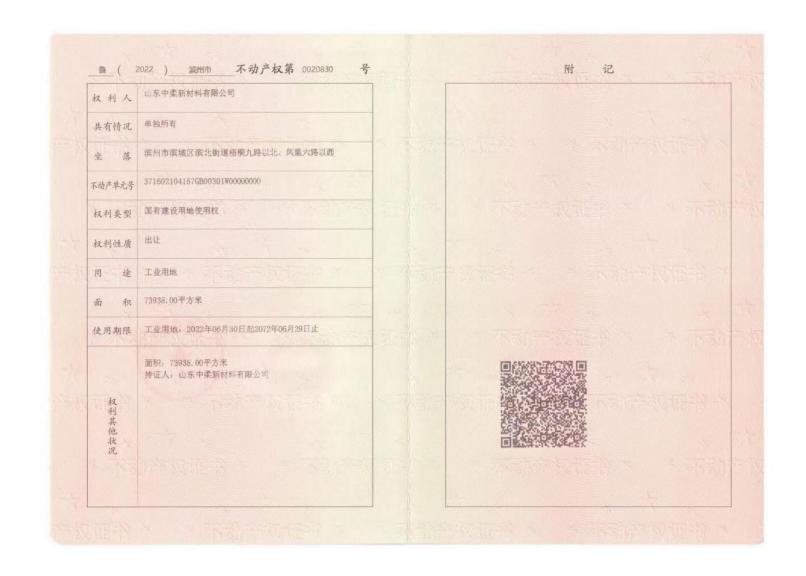
联系人: 刘亚楠 联系电话: 0543-3656018

2024年4月29日

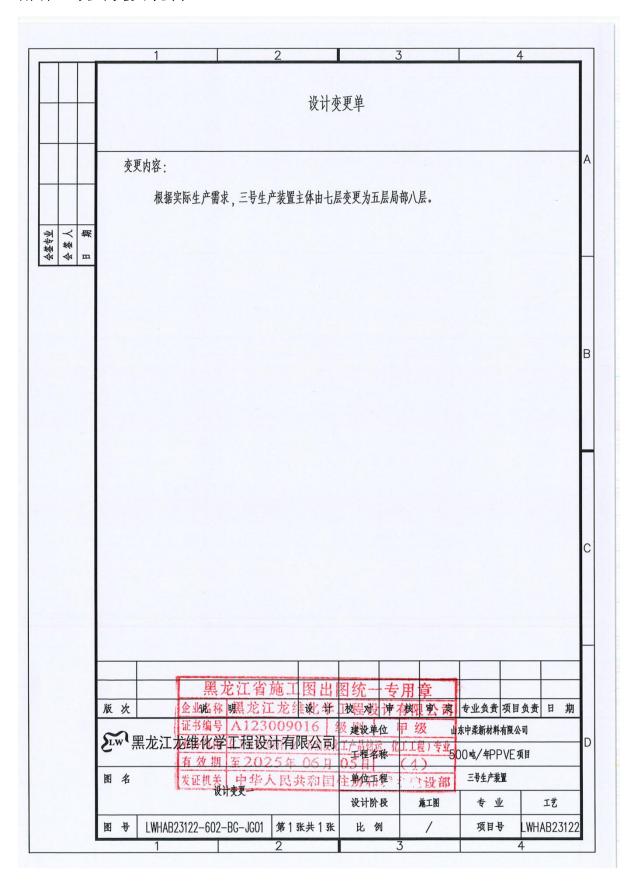
抄送: 滨城区应急管理局、北京安创管理顾问有限公司


附件5营业执照


市场主体应当于每年1月1日至6月30日通过国家企业信用信息公示系统报送公示年度报告


国家市场监督管理总局监制

附件 6 土地证



附件7设计变更说明

附件8设备更换计划说明

设备更换计划说明

为响应国家节能降耗的政策,采用能效水平等级较高的机电设备,计划对500吨/年PPVE项目中能效水平等级达不到二级的机电设备(见下表)在"十五五"期间进行逐步更换完成,确保所选用机电设备能效等级达到二级,进一步推动公司节能降耗工作。

如不能按时更换, 愿承担由此产生的相关责任。

逐步更换设备一览表

用能系统(工序、环节)	设备名称	安装地点	型号	能效等级
六氟环氧丙烷装置	罗茨鼓风机真空泵	3车间0米	YBX3-132S2-2-TZ	三级

山东中柔新林料有限公司 2025年3月28日

附件9蒸汽供汽协议

供汽方:(以下简称"甲方")<u>山东滨州滨北热电有限公司</u> 用汽方:(以下简称"乙方")<u>山东中柔新材料有限公司</u>

经双方友好协商,甲方同意向乙方提供蒸汽用于生产,双方本着长期合作、互利共盈的原则,就有关事宜协议如下:

一、主要约定:

- 1、甲方供汽主管路出口压力为 0.8±0.15MPa,指定开口位置在 DN400 管道上(乙方厂区南侧院外),双方约定以此处阀门为产权界分点,自此阀门后侧产权属于乙方,所有安全、环保、日常巡检、维保等问题均由乙方负责。乙方承诺自产权界分点阀门后侧管线设计、施工等单位均满足相应管道设计、施工资质,完工后需通过滨州市质量技术监督局验收后方可投入使用。
- 2、甲方在产权界分点后侧安装 DN150 计量装置一套(计量装置产权属甲方,乙方无偿提供电源),根据现场确定位置,乙方用汽量以此计量点计数作为收费依据。甲、乙双方每月25 日联合抄表一次,并经双方签字确认作为计费依据。双方同时可自行每天或每班检查汽表。发现停表或故障,及时通知对方共同验表,在此期间根据平时用汽量均值计量,纳入当月计费,直到恢复正常。
- 3、乙方需要停汽或恢复供汽时,需到甲方办理停、送汽等工作 手续,双方签字生效。
- 4、若因产供汽设施故障影响,甲方及时告知乙方,双方协商可行的维修方案。乙方应制定各类事故应急预案(如突遇停汽等意外事件),如因此造成的一切后果由乙方自行承担责任。
- 5、根据山东滨州工业园区管理委员会通知要求,甲方在严格贯彻碳达峰碳中和等国家政策的基础上,做好蒸汽供应工作。
- (1) 如受政府煤炭、水量约束时, 乙方必须无条件服从甲方的 停汽、限汽调度指令。
- (2)在上级政府重污染天气响应或其他影响因素时,乙方必须 无条件服从甲方的停汽、限汽调度指令。

如有以上情况时,乙方必须无条件服从甲方的停汽、限汽调度指令,并提前制定好各类应急预案,因此造成的一切损失,由乙方自行承担,与甲方无关。

二、价格及结算:

- 1、本协议自签定之日起,乙方需向甲方财务一次性交纳贰拾伍万伍仟元管道开口费(甲方开收据),此费用不再退还。如后续扩容时,另行商定。
- 2、每月双方共同抄表后,甲方出据结算通知单,开具增值税专 用发票后,乙方应于三日内交费到甲方公司财务。

第1页共2页

- 3、供汽价格根据乙方用量的多少而执行不同的价格标准:
- (1) 月用汽量<3 吨/小时×24 小时×本月实际天数, 执行 344元/吨;
- (2) 3 吨/小时×24 小时×本月实际天数≤月用汽量<5 吨/小时×24 小时×本月实际天数,执行 334 元/吨:
- (3) 月用汽量≥5吨/小时×24小时×本月实际天数,执行320元/吨。

双方本着公平原则,在煤炭价格因市场价格升降因素波动较大时,双方可协商供汽的价格。

三、违约责任:

- 1、若乙方不按时缴费,乙方自愿承担蒸汽费滞纳的违约责任。 蒸汽费违约金按欠费部分总额同期银行贷款利息的两倍支付,从逾期 之日起计算至交纳结清日止。同时甲方可以先停供,直至追收到蒸汽 费和违约金为止。
- 2、由于乙方责任造成甲方对外停汽并造成损失,乙方应承担全部损失的赔偿责任。
- 3、未经甲方书面同意,乙方不得在其支线上转供、外供汽。如 乙方违反此规定,甲方有权中止供汽合同并向乙方索赔。

四、合同期限:

本合同有效期自 2022 年 J 月 以日至 2025 年 J 月 以日。除因不可抗力因素或乙方违反有关约定外,甲、乙任何一方不能单方面终止协议。若合同期满双方同意可续签。

五、其他:

1、为便于甲、乙双方生产调度和联系,双方设立固定联系电话和联系人,及时沟通。如发生人员变动及时告知对方。

甲方指定联系人:马广辉 联系电话: 13705430515 乙方指定联系人: 为 联系电话: 13646441) //

2、本合同一式三份,单方两份,乙方一份。自双方签字盖章之日起生效。

六、争议处理:

在合同履行过程中,甲、乙双方如发生纠纷,首先友好协商解决,协商不成由甲方所在地人民法院管辖处理。

村 照 44

第2页共2页

附件10企业能源管理手册

山东中柔新材料有限公司 能源管理制度

编制:在外发

审核: 张旭杰

批准: 1728

实施日期: 2021年12月

能源管理制度

1、总则

- 1.1、为加强能源管理,降低物耗,杜绝浪费现象,提高能源利用率,根据国家能源工作方针政策和能源管理标准,结合本公司生产和物资消耗实际情况,特制定本制度。
- **1.2**、能源管理坚持遵循国家有关法规和政策、厉行节约、效能统一的原则。
- 1.3、各部分必须加强节能宣传教育,积极推广节能新技术、新措施。
- 2、能源管理的组织机构及岗位责任制
- 2.1、组织机构
- 2.1.1、能源管理实行公司、部门、车间、班组四级管理体制。公司设能源管理领导小组,对能源管理进行决策;各部门、车间(科室)、班组生产第一责任人为逐级管理机制能源管理责任人,形成全公司能源管理网络。
- 2.1.2、公司能源管理领导小组由公司副总经理任组长,相关职能部门为副组长,车间主任、班组长为组员,能源管理办公室为职能部门,与其它部门一起,负责办理和协调日常事务。各部门、车间(科、室)应结合本部门实际,分别设置兼职能源管理员。
- 2.2、岗位责任制
- 2.2.1、能源管理小组职责

- **2.2.1.1**、协助和督促公司组织贯彻执行国家的能源法律、方针、政策和技术标准。
- 2.2.1.2、负责公司能源管理制度、节能计划、节能技术措施、能源消耗定额、节能奖惩办法的审查与执行监督。
- 2.2.1.3、考核监督公司能耗定额执行情况。
- **2.2.1.4**、开展节能宣传,组织节能培训,积极推进节能新技术、新工艺、新设备、新材料的应用。
- **2.2.1.5**、结合生产、经营状况,对能源管理工作作出决策,并审批实施方案。
- 2.2.2 能源管理办公室职责
- **2.2.2.1**、组织、贯彻执行国家的能源法规、方针、政策、技术标准和公司相关规定。
- 2.2.2.2、参与起草公司能源管理制度。
- 2.2.2.3、考核、监督各部门、车间能耗定额执行情况。
- **2.2.2.4**、配合相关部门组织的用能分析、节能测试,对发现的问题及时进行整改。
- 2.2.2.5、开展节能宣传,组织节能培训。
- 2.2.2.6、负责公司电、水等能源的统计,定期汇总、上报。
- 2.2.2.7、组织能源计量工作,建立健全能源计量的原始记录和台帐。
- **2.2.2.8**、负责能源使用和计量等设备或项目的请购(立项)、改造或 报废的组织的实施。
- 2.2.3、财务科职责

- **2.2.3.1**、组织贯彻执行国家的能源法规、方针、政策、技术标准和公司相关规定。
- 2.2.3.2、参与公司能源管理制度、能源消耗定额、节能奖惩办法的制定与执行监督。
- 2.2.3.3、参与公司增购用能设备的审查。
- 2.2.3.4、负责公司能源使用的统计、汇总和分析。
- 2.2.4、车间职责
- **2.2.4.1**、贯彻执行国家的能源法规、方针、政策、技术标准和公司相关制度。
- 2.2.4.2、负责本车间能源管理制度、节能计划、节能技术措施、能源 消耗定额、节能奖惩办法的制定与执行监督。
- 2.2.4.3 考核监督本车间能耗定额执行情况。
- **2.2.4.4** 协助能源管理办公室完成节能监测,积极参与分析,对发现的问题参与进行整改。
- 2.2.4.5、积极推进节能新技术、新工艺、新设备、新材料的应用。
- 2.2.5 各班组职责
- 2.2.5.1、执行公司相关能源规定, 合理使用资源。
- **2.2.5.2**、组织全班组人员完成班组的节能指标,积极开展小改小革和 技改活动。
- 2.2.6、能源管理员(兼职)的职责

能源管理员协助本部门能源责任人负责对本单位的能源利用状况进行监督、检查。

- 2.2.6.1、协助和督促本单位贯彻执行公司的能源管理相关规定。
- 2.2.6.2、作好本单位能源管理制度、节能计划、节能技术措施、能源 消耗定额、节能奖惩办法的制定与执行监督。
- 2.2.6.3、作好本部门能耗统计、分析,报告情况。
- 2.2.6.4、考核监督本单位能耗定额执行情况。
- 2.2.6.5、组织、监督本单位能源使用和节约规定工作的落实。

3、能源的统计及报告、分析制度

能源统计是指系统的收集整理计量资料与信息,建立健全能源消耗原始记录、统计、台账和经济核算,如实的反应能源活动的过程及 其规律的整个工作。

- 3.1、电、水消耗数量由能源管理办公室专人根据相关数据统计好后 上报。
- **3.2**、能源管理办公室要建立主要耗能设备台账,并准确填写耗能原始记录。
- 3.3、能源管理办公室要建立能源消耗统计台账。

能源统计的内容如下:

- 3.3.1、统计的原始记录;
- 3.3.2、重点能耗设备原始记录;
- 3.3.3、节能奖惩台账;
- 3.3.4、能源计量仪表及检验台账;
- 3.3.5、能源消耗台账。
- 3.4、能源统计的报表

统计报表包括:用电量、耗水量的统计报表。

3.5、能源统计分析

通过定期对主要用能设备、公用系统以及全单位的能源利用状况 进行技术经济分析,并采用必要的测试和能源消耗分析相结合,确定 用能水平,查找节能潜力,明确节能方向,为改进节能管理,进行节 能技术改造,为提高能源利用率提供可续依据。

- 3.5.1、我公司所涉及的能源消费产品主要有电、水。
- 3.5.2、电、水的消费分析主要由能源管理办公室负责。
- 3.5.3、各相关部门对出现的能源消费异常情况,要及时分析上报能源管理领导小组负责人。能源管理办公室根据当月的能源消费情况汇总编制月报,用以能源消费考核。
- 3.5.4、根据国家能源消费政策,各相关部门提出能源消费改进措施并 跟踪实施情况。
- 3.5.5、各相关部门要严格执行国家制定的能源消费政策,控制能源消费。
- 3.6、能源使用及节能管理规定
- 3.6.1、用电管理
- 3.6.1.1、能源管理办公室负责全公司供电、用电管理。组织制定生产工序用电指标,制定节约用电措施和奖惩办法。
- 3.6.1.2、变电站必须努力确保全公司的电力正常供应,并督促、检查 各车间及其各部门合理用电。
- 3.6.1.3、化工公司应对公司生产合理调度,对一些重大耗电设备,有

效控制开停时间。各用电部门必须服从统一指挥,使用电各项指标达 到供电管理部门的要求,从而最大限度的节约电能和费用支出。

- 3.6.1.4、能源管理办公室要指导生产车间加强对设备的维护和日常保养工作,做到有计划的预修和检修,减少设备临时停车,提高设备完好率;各车间要加强设备的管理工作,优化工艺参数的管理,减少故障,提高设备有效利用率,降低工序电耗。
- 3.6.1.5、各部门必须严格执行节电制度,控制办公及公共区域用电的合理开停时间,各处照明设施的用电功率必须符合相关规定,风扇、电暖气等制冷取暖设备在无人工作时必须及时关闭,避免电能的浪费,否则按公司规定给予处罚。
- 3.6.1.6、外单位用电需经领导批准,并按要求到指定地点接表,按表 收费。

4、奖惩

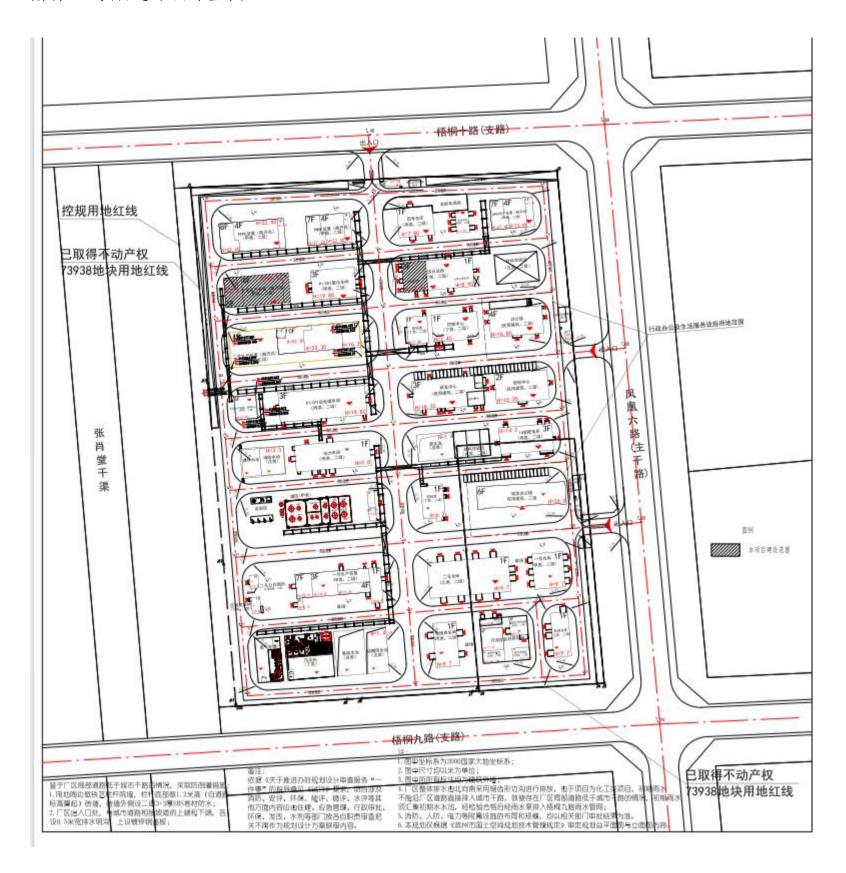
为鼓励和调动企业员工节能的积极性,大力开展计划用能、节约 用能,结合本公司的具体情况,特制订以下奖惩制度,内容如下:

- 4.1、处罚
- 4.1.1、出现以下行为的,对责任人进行处罚:
- 4.1.1.1、私自使用与生产无关电器的处以 200 元/次罚款;
- 4.1.1.2、未按规定使用风扇、电暖气等制冷取暖设备的处以 100 元/ 次罚款;
- 4.1.1.3、存在长明灯等浪费电现象的处以 200 元/次罚款;
- 4.1.1.4、故意毁坏能源计量设备的处以 1000 元/次罚款;

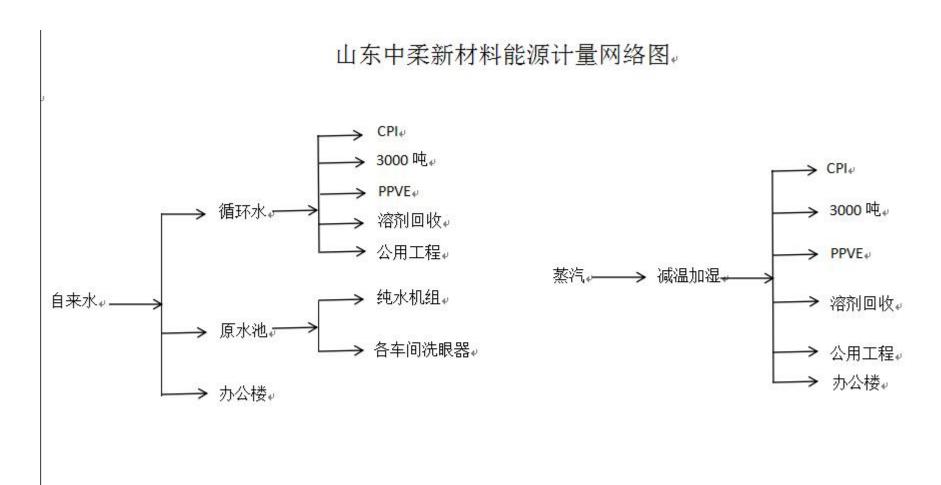
- 4.1.1.5、私拉乱接线路的,不及时关闭办公设备等存在其他浪费现象的处以 100 元/次罚款;
- 4.1.1.6、出现以下情形的:虚报、瞒报、伪造、篡改能源消费统计资料的,连续多次不积极落实公司节能管理规定的或落实效果不明显的, 上报能源管理领导小组,报请公司领导给予严肃处理。

4.2、奖励

- **4.2.1.1**、在推广节能新技术、新工艺、新设备、新材料等节能管理和 节能技术创新中取得显著成绩部门或个人;
- **4.2.1.2**、在清洁生产的跑、冒、滴、漏综合治理活动中提出合理化建议的;
- 4.2.1.3、通过小改小革,实现节能增效,取得明显效果的;
- 4.2.1.4、超额完成节能规定指标的。


5、附则

- 5.1 本办法由能源管理领导小组负责解释;
- 5.2 本办法自下发之日起执行。


附件11项目区域位置图

附件 12 项目总平面布置图

附件13装置区能源计量网络图

附件14现场验收照片

脱羧釜

脱羧釜电机

水洗循环泵

水洗循环泵电机

碱洗循环泵

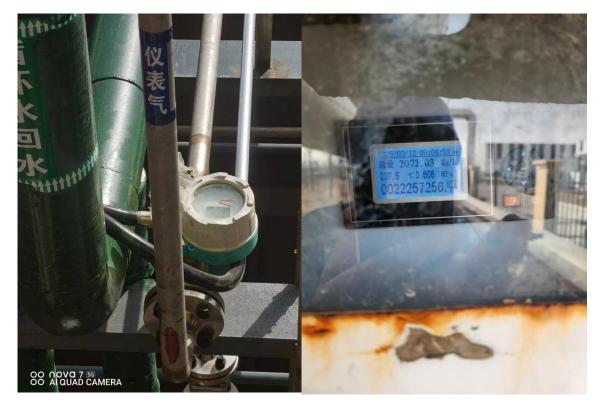
碱洗循环泵电机

真空泵

真空泵电机

水洗釜

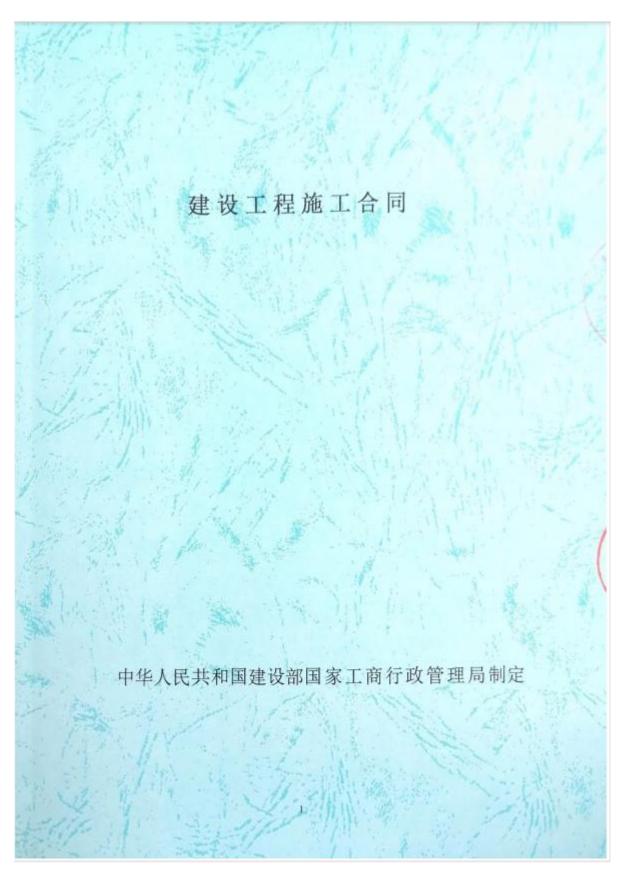
水洗釜电机



导热油炉

导热油炉加热器铭牌

附件 15 计量器具现场验收照片


仪表风计量表

蒸汽计量表

电表

附件16建筑工程施工合同

第一部分 协议书

发包人(全称): 山东中柔新材料有限公司

承包人(全称): 山东清河建工有限责任公司

依照《中华人民共和国民法典》、《中华人民共和国建筑法》及其他有关 法律、行政法规、遵循平等、自愿、公平和诚实信用的原则,双方就本建设工 程施工项协商一致,订立本合同。

一、工程概况

工程名称: 山东中柔新材料有限公司 500 吨/年 PPVE 项目、研发中心项目、 溶剂回收再利用环保项目土建施工工程

工程地点: 山东省滨州市滨州工业园。

工程内容:包括:500吨/年PPVE项目土建工程,研发中心项目土建工程, 溶剂回收再利用环保项目土建工程及配套厂区道路、围墙等附属装置以及发包 方许可范围内的其他建设工程内容。

立项备案证明项目代码:_

资金来源: __自筹__。

二、工程承包范围

承包范围: 除发包方指定分包项目外的,施工图所包括的土石方工程、地基与基础工程、主体结构工程、装修装饰工程、外墙工程、屋面工程、给排水工程、电气(含照明、防雷、接地)、暖通工程,消防工程、卫生洁具施工等分部分项工程。

三、合同工期: 开工日期: <u>以建设单位发出开工令日为工期起算日</u>: 竣工日期: 2024年12月31日

合同工期总日历天数: 以实际开工日期为准。

四、质量标准

工程质量标准: 合格。

五、合同价款

金额(大写): <u>预计3000万元(人民币)以最终审计值为准</u>,项目实施过程中与合同总额相关的各项费用,双方协调确定。

承包方应严格执行国务院第724号《保障农民工工资支付条例》,及时足额向 雇佣民工支付工资。

六、本协议书中有关词语含义本合同第二部分《通用条款》中分别赋予它们的 定义相同。

七、承包人向发包人承诺按照合同约定进行施工、竣工并在质量保修期内承担 工程质量保修责任。

八、发包人向承包人承诺按照合同约定的期限和方式支付合同价款及其他应当 支付的款项

九、合同生效

本合同双方约定签字盖章后生效。本合同一式四份: 发包人、承包人双方各执

两份。

发包人: (公章)

住 所:波北州海风夏之路与梧桐机解放又处

法定代表人: 或海州

委托代表人: の予分

开户银行: 中国义大银行 附价 陈阳 海州州

在 所: 北海大西州飞新京大厦小楼

法定代表人水系

委托代表人。印泰

开户银行: 东蓝银矿 张历有限问 溪州该城友行

日期:00 年6 月1 日

附件17竣工验收报告

500 吨/年 PPVE 项目-PPVE 装置

工程竣工验收报告

建设单位:山东中柔新材料有限公司

(一) 工程概况

500 吨/年 PPVE 项目-PPVE 装置,位于滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉口西北角,层数地上五层(局部八层),建筑高度 40.0 米,钢框结构,桩基础,耐火等级为二级,建筑类别为构筑物,本工程设计使用年限为 50 年。由山东中柔新材料有限公司投资建设,参与单位:

勘察单位: 滨山东明嘉勘察测绘有限公司

设计单位: 北京慎恒工程设计有限公司

监理单位: 山东齐信伟业工程技术有限公司

施工单位: 山东清河建工有限责任公司

(二) 工程建设基本情况

- 1、建设单位执行基本建设程序,执行各项法律,法规,标准及滨州市有关规定,工程勘察,设计,施工,监理等参建单位招标符合相关要求。
- 2、设计情况:北京慎恒工程设计有限公司设计,审查单位为滨州建筑工程施工图审查中心。图纸会审手续齐全有效,施工过程中设计变更、治商要求,各项变更符合规划管理部门签发的规划条件通知要求,符合有关法律、法规、规范。施工过程中无重大设计变更。
- 3、地质概况:山东明嘉勘察测绘有限公司勘察,经过基坑开挖,经验槽检查地基土与勘察报告建议的地基承载力土质相相符。建设工程地基实际情况与勘察报告相符,地基承载力满足设计要求,地基变形满足设计要求。
- 4、监理基本情况和评价: 山东齐信伟业工程技术有限公司负责监理。项目监理部按规定进行了隐蔽验收;按规定对施工试验进行了见证取样与送检;按规定进行了检验批,分项工程,分部工程报验;对基础与钢结构主体主要部位实施了旁站监理。
- 5、施工单位基本情况和评价:山东清河建工有限责任公司承建,管理人员及特殊工种人员 持证上岗。按照《建筑工程施工质量验收统一标准》中分部工程的划分规定施工,地基基础, 主体结构施工过程,无甩项,无质量遗留问题。
- 6、主要建筑材料使用情况:用于主体钢结构建筑材料,特种设备等产品符合相关规定,生产厂家具有生产许可证。建筑材料,构配件设备有合格证明文件,按规定进行了复试,有见证取样与送检,试验和检验的结果全部合格,符合国家及滨州市地方标准。
- 7、工程资料管理情况:工程施工技术资料,施工管理文件,质量保证资料,建筑材料,构配件和设备合格文件及试验检验资料归档,各个分部分别组卷,编目清晰、查找方便,资料全面规范,真实有效。
 - 8、工程验收情况:竣工验收的单位和人员符合有关规定。

工程竣工验收组织形式,验收内容和验收过程如下:

- 1)建设、勘察、设计、施工、监理等单位分别汇报工程合同履约情况和工程建设各环节执行法律、法规和工程建设强制性标准情况。各单位对汇报内容有没有需要提的问题。
 - 2)建设、勘察、设计、施工、监理等单位确认工程档案资料完备情况。
- 3)实地查验工程实体质量。根据现行国家工程验收标准对土建、安装及装修工程质量进行观感检查。
- 4)建设、勘察、设计、施工、监理等单位根据现行国家工程验收标准,综合本工程施工过程中基础、主体等工程质量情况对工程施工、设备安装质量和各管理环节等方面做出总体评价,讨论本工程是否达到工程质量合格标准,能否交付使用。
 - 5) 形成工程验收意见,验收组人员签字认可。
- 6) 质量监督站人员对工程竣工验收的组织形式、验收程序、执行验收规范等情况进行监督,对符合要求者予以认可,发现有违反建设工程质量管理规定行为的,责令改正。
 - 7) 建设单位总结发言。

对勘察,设计,施工,监理等单位验收分别提出的整改意见和竣工验收意见,已全面整改完成并对存在问题进行了复验。

- 8、施工中发生的质量问题,质量,安全事故处理情况:施工过程中未发生过质量问题,质量和安全事故。
 - (三) 对工程质量的综合评价:
 - 1、工程建设符合国家有关的法律,法规,符合基本建设程序。
 - 2、工程建设完成了合同约定的各项内容。
 - 3、工程设计合理,工程质量符合设计文件及施工合同的要求,工程质量合格。
 - 4、工程质量符合国家工程施工质量验收规范。
- 5、参建各方一致认为达到了工程竣工验收条件,建设单位同意工程竣工验收并进行竣工验收备案。

建设单位负责人(法人代表):

项目负责人签字 艺 1

附件18建设工程施工合同发票

附件19部分设备设施采购合同

山东中柔新材料有限公司

甲方: 山东中柔新材料有限公司

乙方: 德帕姆(杭州) 泵业科技有限公司

合同编号: ZR-CG-2024-0530

签订地点: 滨州、水料

签订日期: 2024-7-26

1

RF, 法兰连接, 顶部带充气接 头及压力表 (Y100, 0~1.6MPa.g)

##塔釜粗品槽输送泵 03-P6106 (介质: 三加成、四加成,密度: 1800kg/m³,温度: 30~150℃,粘度: / mPa.s 三聚体酸精馏塔塔釜液输送泵 03-P6206 (介质: 水和酸性杂质,密度: 1000kg/m³,温度: 30~150℃ 粘度: / mPa.s)

	4#塔釜溶液输过		质,密	度: 1800kg/m³, 温度: 30~150℃, 粘度:	/ mPa.s)
3	4#塔釜粗品槽 输送泵 03-P6106、三 聚体酸精馏塔 塔釜液输送泵 03-P6206、4# 塔釜溶液输送 泵 03-P6117	DPMSZAB2200/0.6-1		泵型:液压双隔膜式计量泵,带内置安全阀,带隔膜破裂报警(电接点压力表,开关量信号,Exd II BT4/IP65,带防爆格兰)带冷却连接体流量:2200L/h出口压力:0.6MPa.g过流材质:304阀球:陶球温度:最高150度调量方式:就地手动调节室外防爆电机(螺纹口,2级能效):2.2kW,dII BT4/IP55/F,380V/50Hz/3PH连接方式:法兰连接进口规格:DN40,PN16bar,RF出口规格:DN40,PN16bar,RF	18880	5664
	缓冲器	高温隔膜式, 2.5L, DN40, PN16bar, RF, 法兰连接, 顶 部带充气接头及压力表 (Y100, 0~1.6MPa.g)	3个	材质: 304 散件供货		
4	二加成计量泵 03-P6107A/B/ C/D	DPMSXAABD515/0.6-I	4 台	泵型:液压双隔膜式计量泵,带内置安全阀,带隔膜破裂报警(电接点压力表,开关量信号,Exd II BT4/IP65,带防爆格兰)流量:515L/h 出口压力:0.6MPa.g 介质:二加成 密度:1600kg/m³ 温度:常温 粘度:/mPa.s 过流材质:304 阀球:陶球 调量方式:就地手动调节+变频 室外防爆变频电机(螺纹口,带独立风扇): 0.55kW,d II BT4/IP55/F,380V/5~50Hz/3PH连接方式:法兰连接 进口规格:DN20,PN16bar,RF	16715	6681

。本合同有效期内,经甲乙双方授权代表签字确认的技术协议等文件为本合同的组成 本分,与本合同共同执行,具有同等法律效力。

(以下无正文)

附件: 技术协议盖章签字生效

签署页

甲 方: 山东中柔新材料有限公司

地 址: 山东省滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉口西北角

法人代表: 武海朋

授权代表:

电 话: 0543-2292822

传 真:

开户银行: 中国建设银行股份有限公司滨州滨北支行

账 号: 37050183500800000770

税 号: 91371602MA3UE3PP8D

邮 编:

乙 方: 德帕姆(杭州)菜业科技有限公司

地 址: 杭州经济技术开发区 公子 太街 658 号

法人代表: 周良

授权代表:

签订日期:

电 话: 0571-86400588

传 真:

开户银行: 杭州银行股份有限公司下沙开发区支行

银行账号: 77908 1000 71909

税 号: 91330101749474398P

邮 编: 310018

CS 扫描全能王 3亿人都在用的扫描App

5

山东中柔新材料有限公司

甲方: 山东中柔新材料有限公司

乙方: 山东万丰化工装备科技有限公司

合同编号: ZR-CG-2024-0648

签订地点: 滨州

签订日期: 2024-8-31

甲方(订购方):山东中柔新材料有限公司(以下简称"甲方")。

乙方(制造方): 山东万丰化工装备科技有限公司 (以下简称"乙方")。

根据《中华人民共和国民法典》等相关法律、法规的规定,甲乙双方本着诚信合作、共同发展、互惠互利的原则,经友好协商,一致同意签订编号为 ZR-CG-2024-0648 的导热油 护合同。

第一条:设备名称、数量、价款(含 13%增值税)

序号	名称	规格型号	单位	数量	单价	金额	备注	
1	导热油炉	GYD-98KW	台	3	116000	348000	瑞源	
	100	万捌仟元整	小写金额: 348000 元					
税额台	计: 肆万零	叁拾伍元肆角	小写金额: 40035.40 元					

第二条: 质量标准、质量责任、 相关资料:

- 2.1 乙方所供设备须符合国家标准,并不得低于本合同及技术协议(甲乙双方单独签订技术协议以及图纸签字确认)等附件约定的要求,以上标准及要求如相互之间冲突,以质量等级高的、要求严格的为准。
- 2.2 设备制造过程中,甲方择机现场验货,所出具的合格结论及设备交付后出具的验收合格 报告,不能免除乙方对产品的质量责任。
- 2.3 设备质保期为自设备交付给甲方之日起 18 个月或设备投入正常运行之日起 12 个月(以先到为准)易损件除外,质保期内如有质量问题,乙方应在接到甲方故障通知后 24 个小时内到达现场维修;因设备质量问题给甲方造成的直接损失由乙方负责全额赔偿。如乙方未按期进行维修,甲方有权自行维修或由第三方进行维修,由此产生的维修费用由乙方承担。
- 2.4 质保期内设备同样质量故障出现两次以上或设备主体出现重大质量故障的,视为缺陷设备,甲方有权要求换货或退货,若给甲方造成损失,由乙方予以赔偿。
- 2.5 乙方保证交付给甲方的设备为全新产品,经甲方核实如有旧配件或翻新的迹象,乙方无条件接受退货,并在 2 个工作日内退还甲方已经支付给乙方的全部货款,若给甲方造成损失,由乙方承担。
- 2.6 设备在运输过程中,如因乙方包装或者加固不当造成设备损坏,由此产生的所有直接损失和间接损失由乙方承担。
- 2.7 乙方应随货提供相关资料,包括但不限于设备说明书、设备合格证、设备检测证书等相 关资料,以上资料的内容与本合同有矛盾的,以本合同约定为准。

第三条:包装标准及费用承担

3.1 乙方负责免费包装且包装物不回收,包装物能确保货物在装卸及运输途中不受任何损伤;

Z工装 303MA 同专

裁定书等法律文书等。因联系地址不准确导致邮件被退回的,邮件退回之日视为已送达,所 造成的任何损失或法律责任应自行承担。联系地址如有变更,双方应当在变更后三日内书面 告知对方,逾期未告知的,仍然以原联系地址为准。

10.3 在本合同有效期内,经甲乙双方授权代表签字确认的技术协议等文件为本合同的组成部分,与本合同共同执行,具有同等法律效力。

(以下无正文)

附件: 技术协议盖章签字生效

签署页

甲 方: 山东中柔新材料有限公司

地 址: 山东省滨州市滨城区滨北街道办事处凤凰六路与梧桐九路交叉口西北角

法人代表: 武海朋

授权代表:

电 话: 0543-2292822

传 真:

开户银行: 中国建设银行股份有限公司资州滨北支行

账号: 37050183500800000770084864

税 号: 91371602MA3UE3PP8D

乙 方: 山东万丰代工装备科技有限公司

地 址:山东省淄博市村台與東連鎮聚荣路 18号

法人代表: 李锋

授权代表: 张成龙

签订日期:

电 话: 0533-3811603

传 真: 0533-3811603

开户银行: 齐商银行公园新村支行

银行账号: 8011 0650 1421 007390

税 号: 91370303MA3F4BET41

CS 扫描全能王

瑞源®

一. 设备特征:

该系列型导热油炉(有机热载体锅炉)是一种新型环保的热能转换设备。其工作原理是:以电力为能源,通过电热元件将电能转换成热能;以有机热载体(导热油)作为传热介质,通过高温油泵将导热油在系统中进行强制性循环,使其被周而复始的加热,从而达到满足需热设备连续获得所需热能的目的;并可满足生产流程中设定的工艺温度以及高精度控温的要求。

二、设备参数:

2.1 加热主要技术参数

序号	名 称	技术参数	备注
1	设备型号	YWDRO. 098-0. 4/300/280	
2	电 源	380V, 50Hz	
3	加热功率	98KW	
4	有机热载体	导热油	
5	设计温度	350℃	
6	最高工作温度	300℃	可调
7	控温精度	±1℃	
8	进出口口径	出油口 DN80, 回油口 DN100	客户要求
9	外形尺寸	L2450×W2200×H1650 mm	
10	重 量	1050KG	

2.2 热油循环泵技术参数

序号	名 称	技术参数	备注
1	热油泵型号	100-65-170	
2	厂家	武安永盛机械泵业	
3	电机功率	11KW	
3. 1	电机品牌	能效等级二级	江苏大中

附件 20 部分设备试机材料

anu	71 350	3-J306 7	机器单	机计	式车iu	1.求	工程名	5帯: 50	10 吨/年	PPVE J	I	
į	设备名 4	非 氟化	釜出料聚	i	各位号	03-	03-P6316A		工作介质		工艺物料	
躯	动机料	1205	隔爆型三 步电动机	相如連		291	2915r/min		车介质	清水		
1	《车类》	9 -空负	荷 口負布	ij Đ	境温度	1	計画	试	车日期	4	手 月	E
连台	美运转1	时间	8 h	Æ	动电流	1	6A	启	勒时刻		8:00	
	检验	近项目	设计值/	1			实	幾(Ř	-		
	运行证	己录时刻	允许值	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15;00	15:0
E	五力	进口				3	1 8					7
1	/Pa	出口										
轴方	水温度	联轴器侧										
	r	非联轴器侧		7		1			8 8			
	轴承	联轴器侧	75	41.2	43. 5	44.8	42.5	42.5	42.0	40.0	42.0	43.6
駆	温度	非联轴器侧	75	39. 2	41.1	42.6	40.3	39.5	39.8	39.0	40.6	41.8
动动		b压、V	380	380	380	380	380	380	380	380	380	380
in.	-	电流,A	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
٠,	_	⊞. мРа			-	8 3	2		3			
_	蒸汽	流量。kg/h	-	_	-							-
润滑油		压力,MPa	-		-					_	_	
_		温度, ℃	-		-							-
70	却水	压力,MPa	1		-	6						_
		温度。で	-		-		_				_	_
	振幅	轴 向	+		+		-			-	-	-
000	动值	水平	-		-					-	_	
-	μm +-m+as	堅 直	0 049		-						-	-
		系统试验情?		要求	-							
	3	建设单位	Ż	Τ	监	理单	位	23	ħ	医工具	位位	
*业工程师。 华克华				43	サル原理工程师:				专业工程館: 石る人 原量检查员: 夏 3年 ic 录 人: 名 QA			

设备名称 鐵液循环泵		(油煤环泵	设备位号		03-P6313B		Te	工作介质		工艺物料		
10	动机料	高效	本隔層型三相 計步电动机		村 連	2945r/min			试车介质		消水	
1	(车类)	N -空5	0.荷 口负机	ē	环境温度	1	4.11	10.4	日期	年	月	B
连	数运转:	村间	8 h		启动电流	3	IOA.	启动	b时刻		8:00	
	检验	在明日	设计值/				妄	20 A	N .			
	基行i	己录时刻	允许值	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:0
B	助	進 口								Ÿ.		
1	APa .	88 🗆				J						
	科温度	联轴器侧			-							
	牧林派	非联轴器					415	14 -				and the
	温度	联轴器侧		42.3		44.8	42.5	40.5	42. 0	41.0	42.0	40.6
塞	中正、V		N 75 380	38.7		41.6	40.3 380	38.5	39. 8	39.0	39.6	39.5
糠	_	电流,A	14.0	14.1		14.0	14.0	14.0	14.0	14.0	14.0	14.0
机	/T.H. MPa		14.0	140	146.0	175.0	335.9	ET-O	14.0	3.76.50	3.95.00	1,419,5
	高汽流量, kg/h											
	压力、MPw											
润滑油		温度, 飞	Control of the Contro		1							
1900	The St.	压力,M	Pa a									
-87	却水	温度, 7										Т
双	振幅	轴序										
报	动值	水平										
	μт	※ 1						8 -				
保	安联债	系统试验制	7亿:合格									
斌	车结论	自检合物	5.符合规则	要求								
	3	建设单	位	Г	捅	理单	位		D	EI 4	单位	0.04474
专业工程师:			专业监理工程师。					专业工程序、 ろんん 人 原理检查员: するか				
	/i	猫			Ī	柳	to	拔	0000000000		RADI	

1	设备名4	味 破	收输送泵	1	设备位号	03	-P6311A	I	作介质		工艺物材	4
駆	动机料	1.00 m	朝爆型三4 电动机	6.异	种 摊		2900r/min		车介质	清水		
1	大年类 3	9 -空角	荷口负	析	环境温度		常溫	ば	丰日期	4	半 月	B
姓士	美运转1	対何	8 h		启动电流		8.8A	.6	动时刻		8:00	
	檢引	左项目	设计值/				实	80 (M.			
	堪行i	己录时刻	允许值	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:0
- 10	E力	进口	U 3									
-	4Pa	出口										
1000	N温度	联轴器侧										
4	C	非联轴器侧										
	轴承 温度	联轴器侧	75	41. 2		44.8	42. 5	42.5	42. 0	40.0	42.0	43.6
题	10	非联轴器侧	-	39. 2		42.6	40. 3	39.5	39. 8	39.0	40.6	41.5
勒	电压。V 电流。A		380	380	380	380	380	380	380	380	380	380
#L	PUE, MPa		4.4	4. 4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
			-		1						-	
	蕨汽流量。kg/h 压力。MPa				+ -	-		-			-	
摛	滑油	温度,°C										-
-		压力,MPa	1		+							
冷	却水	温度、C	1									
Tier	規幅	触点, 色			+							
-35	探覧 动催	水平			+							
	μm Lim	整 直	1		+	-			-			
-		系统试验情况	J. A.W.								-	
700		: 自检合格。		要求								
		* 设 单 化		Т	No. 3	里单。	ltr	T	iA	i I #	l fr	
专业工程师。				0.000				业工程			<i>p</i> —	
专	坐工程	绑		43	と監理工程 - - - -	27 th 27 th 27 th	Vo		量检查		那么	

7.

附件21评审意见

《山东中柔新材料有限公司 500 吨/年 PPVE 项目》节 能验收专家评审意见

根据《固定资产节能审查办法》(国家发改委 2023 年第 2 号令)、《山东省固定资产投资项目节能审查实施办法》(鲁发改环资〔2023〕461 号)、《山东省固定资产投资项目节能验收管理办法(试行)》(鲁发改环资〔2024〕657 号)的验收要求,受山东中柔新材料有限公司委托,山东策问项目管理咨询股份有限公司于 2025 年 3 月 26 日组织专家对《山东中柔新材料有限公司 500 吨/年 PPVE 项目》进行节能验收,专家组听取了建设单位对项目建设情况的汇报,查阅了项目节能验收报告,核实了项目建设情况,查看了生产现场,经讨论,专家组认为节能验收报告内容详实,装置建设方案、主要用能设备、节能技术和管理措施、计量器具、综合能源消耗量等指标分析结论可靠,同意通过验收。

专家组同时提出以下修改意见:

- 1、核实设备运行时间。
- 2、补充项目工艺流程图。
- 3、核实项目的开竣工时间及项目进展情况。
- 4、完善项目总平面布置图,补充项目位置图。
- 5、补充设备更换承诺。
- 6、补充设计单位出具的建(构)筑物结构变更说明。

专家签字: 丁二年 花柳市 益、趙

2025年3月26日

山东中柔新材料有限公司 500 吨/年 PPVE 项目节能验收专家签字表

終	4cing	34,400 (3)	the state of the s
职务/职称	世曜	副教授	恒
工作单位	香驰控股有限公司	山东航空学院化工与安全学院	滨州诺棣环保工程有限公司
姓名	王永军	崔铭伟	黄萌
序号	1	2	3